全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于l_p正则化图像去模糊的快速广义迭代收缩算法 Image Deblurring via Fast Generalized Iterative Shrinkage Thresholding Algorithm for l_p Regularization

Keywords: 图像去模糊,lp正则化,迭代收缩算法,加权矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

将图像去模糊问题转化为求解l_p正则化的非凸优化问题,提出了一种求解l_p正则化问题的快速广义迭代收缩算法(FGISA,fast generalized iterative shrinkage thresholding algorithm).该算法通过对广义迭代收缩算法(GISA,generalized iterative shrinkage thresholding algorithm)的梯度项添加一个加权矩阵,并结合Nesterov梯度加速方法达到加快算法收敛速度的目的.由于加权矩阵仅仅与模糊矩阵有关,并且不随迭代过程变化,因此,与GISA相比FGISA并不增加算法的计算复杂度.文章给出了算法收敛性的理论分析.实验结果表明FGISA算法在收敛速度和图像恢复效果方面对GISA算法均有较大的改进

References

[1]  朱华平,吴传生,周俊,等.散焦模糊图像复原的截断奇异值分解算法[J].武汉大学学报(理学版),2010,56(4):391-394.ZHU H P,WU C S,ZHOU J,et al.Blurred defocused image restoration based on truncated singular value decomposition[J].J Wuhan Univ(Nat Sci Ed),2010,56(4):391-394(Ch).
[2]  ZUO W M,REN D W,ZHANG D,et al.Learning iteration-wise generalized shrinkage-thresholding operators for blind deconvolution[J].IEEE Transactions on Image Processing,2016,25(4):1751-1764.DOI:10.1109/TIP.2016.2531905.
[3]  BECK A,TEBOULLE M.A fast iterative shrinkagethresholding algorithm for linear inverse problems[J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.DOI:10.1137/080716542.
[4]  XU Z B,ZHANG H,WANG Y,et al.L1/2regularization[J].Science China Information Sciences,2010,53(6):1159-1169.DOI:10.1007/s11432-010-0090-0.
[5]  ZENG,J S,PENG Z M,LIN S B.GAITA:A Gauss-Seidel iterative thresholding algorithm for lq regularized least squares regression[J].Journal of Computational and Applied Mathematics,2017,319:220-235.DOI:10.1016/j.cam.2017.01.010.
[6]  SHEN Z W,TOH K C,YUN S.An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach[J].SIAM Journal on Imaging Sciences,2011,4(2),573-596.DOI:10.1137/090779437.
[7]  TAN K,LI W,HUANG Y,et al.Dual-channel fast iterative shrinkage-thresholding regularization algorithm for scanning radar forward-looking imaging[J].Journal of Applied Remote Sensing,2017,11(1):015008.DOI:10.1016/j.cam.2017.01.010.
[8]  ZIBETTI M V,HELOU E,PIPA D.Accelerating over-relaxed and monotone fast iterative shrinkage thresholding algorithms with line search for sparse reconstructions[J].IEEE Transactions on Image Processing,2017,26(7):3569-3578.DOI:10.1109/TIP.2017.2699483.
[9]  ZULFIQUAR A B M,AHMAD M O,SWAMY M N S.An improved fast iterative shrinkage thresholding algorithm for image deblurring[J].SIAM Journal on Imaging Sciences,2015,8(3):1640-1657.DOI:10.1137/140970537.
[10]  ZUO W M,MENG D Y,ZHANG Lei,et al.A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding[C/OL].[2017-02-02].http://www.cv-foundation.org/openaccess/content_iccv_2013/html/Zuo_A_Generalized_Iterated_2013_ICCV_paper.html.
[11]  LANZA A,MORIGI S,REICHEL L,et al.A generalized Krylov subspace method for lp-lq minimization[J].SIAM Journal on Scientific Computing,2015,37(5):S30-S50.DOI:10.1137/140967982.
[12]  余义斌,彭念,甘俊英.凹凸范数比值正则化的快速图像盲去模糊[J].电子学报,2016,44(5):1168-1173.DOI:10.3969/j.issn.0372-2112.2016.05.022.YU Y B,PENG N,GAN J Y.Fast blind image deblurring using ratio of concave norm to convex norm regularization[J].Chinese Journal of Electronics,2016,44(5):1168-1173.DOI:10.3969/j.issn.0372-2112.2016.05.022(Ch).
[13]  DAUBECHIESI,DEFRISE M,DE M C.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics,2004,57(11):1413-1457.DOI:10.1002/cpa.20042.
[14]  XIE Z P,CHEN S.SCIHTBB:Sparsity constrained iterative hard thresholding with Barzilai-Borwein step size[J].Neurocomputing,2011,74(17):3663-3676.DOI:10.1016/j.neucom.2011.07.003.
[15]  NESTEROV Y.Introductory Lectures on Convex Optimization:A Basic Course[M/OL].[2017-03-02].https://link.springer.com/book/10.1007%2F978-1-4419-8853-9.
[16]  MICHAILOVICH O V.An iterative shrinkage approach to total-variation image restoration[J].IEEE Transactions on Image Processing,2011,20(5):1281-1299.DOI:10.1109/TIP.2010.209053.
[17]  GUERQUIN K M,HBERLIN M,PRUESSMANN K P,et al.A fast wavelet-based reconstruction method for magnetic resonance imaging[J].IEEE Transactions on Medical Imaging,2011,30(9):1649-1660.DOI:10.1109/TMI.2011.2140121.
[18]  YAMAGISHI M,YAMADA I.Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize[J].Inverse Problems,2011,27(10):105008-105022(15).DOI:10.1088/0266-5611/27/10/105008.
[19]  GONG P H,ZHANG C S,LU Z S,et al.A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems[C/OL].[2017-03-12].http://proceedings.mlr.press/v28/gong13a.html.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133