全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

大数据环境下基于信息论的入侵检测数据归一化方法

Keywords: 归一化,入侵检测,联合信息增益,信息论

Full-Text   Cite this paper   Add to My Lib

Abstract:

在大数据时代,入侵检测作为网络安全的一种重要技术手段被广泛采用.网络入侵检测数据不同的特征属性具有不同的量纲和量纲单位,为了消除特征属性之间的量纲影响,一般在进行数据分析之前采用归一化处理.当前网络入侵检测数据的归一化处理大多只考虑特征属性取值本身的分布情况,没有客观地评估它对类别信息或其他特征属性的影响.针对这个问题,提出了一种基于信息论的网络入侵检测数据归一化方法.对连续特征属性,它以联合信息增益作为区间的分割评估方法,以区间的类别占比作为标准依据进行归一化处理;对离散特征属性,它根据类别条件熵的占比进行了归一化处理.利用NSL-KDD数据集仿真实验,结果表明,该方法不仅能够提高学习算法的收敛性,而且归一化的结果有助于提高分类模型的检测率和降低分类模型的误报率

References

[1]  肖立中,邵志清,马汉华,等.网络人侵检测中的自动决定聚类数算法[J].软件学报,2008,19(8):2140-2148.DOI:10.3724/SP.J.1001.2008.02140.XIAO L Z,SHAO Z Q,MA H H,et al.An algorithm for automatic clustering number determination in networks intrusion detection[J].Journal of Software,2008,19(8):2140-2148.DOI:10.3724/SP.J.1001.2008.02140(Ch).
[2]  钱燕燕,李永忠,余西亚.基于多标记与半监督学习的人侵检测方法研究[J].计算机科学,2015,42(2):134-136.DOI:10.11896/j.issn.1002-137X.2015.2.029.QIAN Y Y,LI Y Z,YU X Y.Intrusion detection method based on multi-label and semi-supervised learning[J].Computer Science,2015,42(2):134-136.DOI:10.11896/j.issn.1002-137X.2015.2.029(Ch).
[3]  罗敏,王丽娜,张焕国.基于无监督聚类的人侵检测方法[J].电子学报,2003,31(11):1713-1716.DOI:10.3321/j.issn:0372-2112.2003.11.028.LUO M,WANG L N,ZHANG H G.An unsupervised clustering-based intrusion detection method[J].Acta Electronica Sinica,2003,31(11):1713-1716.DOI:10.3321/j.issn:0372-2112.2003.11.028(Ch).
[4]  梁碧珍,陆月然,杨旭光.一种基于相对距离竞争激活的网络人侵检测算法[J].计算机工程与科学,2011,33(9):13-18.DOI:10.3969/j.issn.1007-130X.2011.09.003.LIANG B Z,LU Y R,YANG X G.A network intrusion detection algorithm based on relative distance competitive activation[J].Computer Engineering&Science,2011,33(9):13-18.DOI:10.3969/j.issn.1007-130X.2011.09.003(Ch).
[5]  魏明军,王月月,金建国.一种改进免疫算法的人侵检测设计[J].西安电子科技大学学报,2016,43(2):126-131.DOI:10.3969/j.issn.1001-2400.2016.02.022.WEI M J,WANG Y Y,JIN J G.Intrusion detection design of the improved immune algorithm[J].Journal of Xidian University,2016,43(2):126-131.DOI:10.3969/j.issn.1001-2400.2016.02.022(Ch).
[6]  CHEN T,HONG Z.A novel feature gene selection method based on neighborhood mutual information[J].International Journal of Hybrid In formation Technology,2015,7(8):277-292.DOI:10.14257/ijhit.2015.8.7.26.
[7]  TAVALLAEE M,BAGHERI E,LU W,et al.A detailed analysis of the KDD CUP 99 data set[C]//IEEE International Conference on Computational Intelligence for Security and Defense Applications.New York:IEEE Press,2009:53-58.
[8]  CAI Z P,WANG Z J,ZHEN G K,et al.A distributed TCAM coprocessor architecture for integrated longest prefix matching,policy filtering,and content filtering[J].IEEE Trans Computers,2013,62(3):417-427.DOI:10.1109/TC.2011.255.
[9]  张逸群.对决策树连续值找分割点的算法的改进[J].计算机光盘软件与应用,2013(23):116-117.ZHANG Y Q.The Improvement of the algorithm for determining the splitting point of continuous decision tree[J].Computer CD Software and Ap plications2013(23):116-117(Ch).
[10]  姚亚夫,邢留涛.决策树C4.5连续属性分割阈值算法改进及其应用[J].中南大学学报(自然科学版),2011,42(12):3772-3776.YAO Y F,XING L T.Improvement of C4.5 decision tree continuous attributes segmentation threshold algorithm and its application[J].Journal o f Central South University(Science and Technology),2011,42(12):3772-3776(Ch).
[11]  张辉宜,谢业名.一种基于概率的卡方特征选择方法[J].计算机工程,2016,42(8):194-198.DOI:10.3969/j.issn.1000-3428.2016.08.035.ZHANG H Y,XIE Y M.A method of CHI-square feature selection based on probability[J].Computer Engineering,2016,42(8):194-198.DOI:10.3969/j.issn.1000-3428.2016.08.035(Ch).
[12]  黄东.Bad:基于最小描述长度的均衡离散化方法[J].计算机工程与科学,2011,33(12):130-135.DOI:10.3969/j.issn.1007-130X.2011.12.024.HUANG D.Bad:A balanced discretization algorithm based on the minimum description length[J].Computer Engineering and Science,2011,33(12):130-135.DOI:10.3969/j.issn.1007-130X.2011.12.024(Ch).
[13]  李洋,方滨兴,郭莉,等.基于主动学习和TCM-KNN方法的有指导人侵检测技术[J].计算机学报,2007,30(8):1464-1473.DOI:10.3321/j.issn:0254-4164.2007.08.029.LI Y,FANG B X,GUO L,et al.Supervised intrusion detection based on active learning and TCM-KNN algorithm[J].Chinese Journal of Computers,2007,30(8):1464-1473.DOI:10.3321/j.issn:0254-4164.2007.08.029(Ch).
[14]  刘珊珊,谢晓尧,景凤宣,等.基于PCA的PSO-BP人侵检测研究[J].计算机应用研究,2016,33(9):2795-2798.DOI:10.3969/j.issn.1001-3695.2016.09.054.LIU S S,XIE X Y,JING F X,et al.Research on network intrusion detection based on PCA PSO-BP[J].Application Research of Computers,2016,33(9):2795-2798.DOI:10.3969/j.issn.1001-3695.2016.09.054(Ch).
[15]  YOON M K,MOHAN S,CHOI J,et al.Learning execution contexts from system call distributions for intrusion detection in embedded systems[J].Com puter Science,2015,42(1):349-355.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133