全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于小波神经网络的东江流域径流模拟多模型比较研究 Multiple Models Comparative Study of the East River Basin Runoff Simulation Based on Wavelet Neural Network

Keywords: 小波神经网络,径流模拟及预测,母小波,分解等级,模型比较

Full-Text   Cite this paper   Add to My Lib

Abstract:

东江流域为香港及广州等特大城市的重要水源地,水文过程模拟及预测对流域水资源开发与管理具有重要理论与现实意义.本研究针对小波神经网络中最佳母小波和最佳等级选择问题,在与传统模型比较基础上,研究得出东江流域径流模拟的最佳小波神经网络模型,并以此进行东江流域的径流预测分析.结果表明:1)选择恰当的母小波可以有效捕捉信号统计特征,该流域蒸发量、降水量、温度和湿度的最佳分解母小波分别为Db4,Sym2,Db9及Db4小波,其小波分解最佳等级为5;2)小波神经网络作为新型混合优化模型,在母小波选择和分解等级确定后,经东江博罗站径流模拟分析,确定为东江流域最佳小波神经网络模拟模型.该研究用于东江径流的预测,效果在满意范围内

References

[1]  Makkeasorn A,Chang N B,Zhou X.Short-term streamflow forecasting with global climate change implications—A comparative study between genetic programming and neural network models[J].Journal of Hydrology,2008,352(3-4),336-354.
[2]  Nourani V,Kisi,Komasi M.Two hybrid artificial intelligence approaches for modeling rainfall-runoff process[J].Journal of Hydrology,2011,402(1):41-59.
[3]  Wu M C,Lin G F,Lin H Y.Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map[J].Hydrological Processes,2014,28(2):386-397.
[4]  Nourani V,Komasi M,Mano A.A multivariate ANN-wavelet approach for rainfall-runoff modeling[J].Water Resources Management,2009,23(14):2877-2894.
[5]  Zhang Q,Singh V P,Li K,et al.Trend,periodicity and abrupt change in streamflow of the East River,the Pearl River basin[J].Hydrological Processes,2014,28(2):305-314.
[6]  林凯荣,何艳虎,陈晓宏.气候变化及人类活动对东江流域径流影响的贡献分解研究[J].水利学报,2012,43(11):1312-1321.Lin K R,He Y H,Chen X H.Identifying the quantitative effect of climate change and human activity on runoff in the Dongjiang River Basin[J].Journal of Hydraulic Engineering,2012,43(11):1312-1321(Ch).
[7]  Yoon H S,Jun S C,Hyun Y J,et al.A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer[J].Journal of Hydrology,2011,396(1-2):128-138.
[8]  Adamowski J,Sun K.Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds[J].Journal of Hydrology,2010,390(1):85-91.
[9]  石教智,陈晓宏,吴甜.东江流域降雨径流变化趋势及其原因分析[J].水电能源科学,2005,23(5):8-10.Shi J Z,Chen X H,Wu T.Study on rainfall and runoff change tendency and its causes in East River Valley[J].Hydroelectric Energy,2005,23(5):8-10(Ch).
[10]  Lin J Y,Cheng C T,Chau K W.Using support vector machines for long-term discharge prediction[J].Hydrological Sciences Journal,2006,51(4):599-612.
[11]  Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
[12]  Nourani V,Alami M T,Aminfar M H.A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation[J].Engineering Applications of Artificial Intelligence,2009,22(3):466-472.
[13]  张德丰.MATLAB小波分析与工程应用[M].北京:国防工业出版社,2008.Zhang D F.Wavelet Analysis and Engineering Application in Matlab[M].Beijing:National Defence Industry Press,2008(Ch).
[14]  Chang C C,Lin C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology(TIST),2011,2(3):27.
[15]  Wang W,Ding J.Wavelet network model and its application to the prediction of hydrology[J].Nature and Science,2003,1(1):67-71.
[16]  Govindaraju R S.Artificial neural networks in hydrology.Ⅰ:Preliminary concepts[J].J Hydrol Eng,2000,5(2):115-123.
[17]  Samsudin R,Saad P,Shabri A.River flow time series using least squares support vector machines[J].Hydrology&Earth System Sciences,2011,15(6):1835-1852.
[18]  黄国如,解河海.基于GLUE方法的流域水文模型的不确定性分析[J].华南理工大学学报(自然科学版),2007,35(3):137-142,149.Huang G R,Xie H H.Uncertainty analyses of watershed hydrological model based on GLUE method[J].Journal of South China University of Technology(Natural Science Edition),2007,35(3):137-142,149(Ch).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133