全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

面向流数据的演化聚类算法 Evolving Clustering Method for Stream Data

Keywords: 流数据,在线聚类,演化聚类,戴维森保丁指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统的聚类算法难以适应流数据在线聚类的问题,本文在演化聚类算法(ECM)的基础上,改进了ECM中聚类中心和聚类半径的更新过程,引入戴维森保丁指数(DBI,Davies-Bouldin Index)作为数据归类的评估准则,提出了一种面向流数据的演化聚类算法(SDECM).实验结果表明,与ECM相比,SDECM在目标函数值、DBI值、准确率和纯度等评估准则方面具有更好的聚类性能

References

[1]  CHAKRABARTI D,KUMAR R,TOMKINS A.Evolutionary clustering[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2006:554-560.
[2]  ZHANG T,RAMAKRISHNAN R,LIVNY M.BIRCH:A new data clustering algorithm and its applications[J].Data Mining and Knowledge Discovery,1997,1(2):141-182.
[3]  ARORAP,DEEPALI D,VARSHNEY S.Analysis of K-means and K-medoids algorithm for big data[J].Procedia Computer Science,2016,78:507-512.
[4]  MANSOORIE G.FRBC:A fuzzy rule based clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2011,19(5):960-971.
[5]  KASABOV N,SONG Q.DENFIS:Dynamic evolving neural-fuzzy inference system and its application for time-series prediction[J].IEEE Transactions on Fuzzy Systems,2002,10(2):144-154.
[6]  DAVIES D L,BOULDIN D W.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
[7]  LEKOVA A K,DIMIYROVA M I.Hand gestures recognition based on lightweight evolving fuzzy clustering method[C]//Proceedings of the 2013 IEEE Second International Conference on Image Information Processing.New York:IEEE,2013:505-510.
[8]  TANG J,ZHANG G,WANG Y,et al.A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation[J].Transportation Research Part C Emerging Technologies,2015,51:29-40.
[9]  王玲,孙华.基于自适应学习的演化聚类算法[J].控制与决策,2016,31(3):423-428.DOI:10.13195/j.kzyjc.2014.1945.WANG L,SUN H.Evolving clustering method based on self-adaptive learning[J].Control and Decision,2016,31(3):423-428.DOI:10.13195/j.kzyjc.2014.1945(Ch).
[10]  RAVI V,SRINIVAS E R,KASABOV N K.On-line evolving fuzzy clustering[C]//International Conference on Computational Intelligence and Multimedia Applications.New York:IEEE,2007,1:347-351.
[11]  SUN Y,ZHU Q M,CHEN Z X.An iterative initialpoints refinement algorithm for categorical data clustering[J].Pattern Recognition Letters,2002,23(7):875-884.
[12]  CHEN J Y,HE H H.A fast density-based data stream clustering algorithm with cluster centers selfdetermined for mixed data[J].Information Sciences,2016,345(C):271-293.
[13]  张长水,张见闻.演化数据的学习[J].计算机学报,2013,36(2):310-316.DOI:10.3724/SP.J.1016.2013.00310.ZHANG C S,ZHANG J W.Learning on time-evolving data[J].Chinese Journal of Computers,2013,36(2):310-316.DOI:10.3724/SP.J.1016.2013.00310(Ch).
[14]  MEI J P,WANG Y,CHEN L,MIAO C.Incremental fuzzy clustering for document categorization[C]//2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).New York:IEEE,2014:1518-1525.
[15]  HOU J,LIU W,Xu E,et al.Towards parameter-independent data clustering and image segmentation[J].Pattern Recognition,2016,60:25-36.
[16]  HARTIGAN J A,WONG M A.Algorithm AS 136:A K-means clustering algorithm[J].Applied Statistics,1979,28(1):100-108.
[17]  SONG Q,KASABOV N.ECM—A novel on-line evolving clustering method and its applications[J].M.i.posner Foundations of Cognitive Science,2001:631-682.
[18]  杜根远,田胜利,苗放.结合ECM和FCM聚类的遥感图像分割新方法[J].计算机应用研究,2009,26(10):3995-3997.DOI:10.3969/j.issn.1001-3695.2009.10.115.DU G Y,TIAN S L,MIAO F.Remote sensing image segmentation based on evolving clustering and fuzzy Cmeans[J].Application Research of Computers,2009,26(10):3995-3997.DOI:10.3969/j.issn.1001-3695.2009.10.115(Ch).
[19]  BEZDEK J C,EHRLICH R,FULL W.FCM:The fuzzy C-means clustering algorithm[J].Computers&Geosciences,1984,10(2-3):191-203.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133