全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于学习的动态多目标方法求解约束优化问题 Constrained Optimization by Solving Equivalent Dynamic Constrained Multi-Objective Based on Learning

Keywords: 演化算法,约束优化,多目标优化,动态多目标优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种用多目标技术求解约束优化问题的算法.该算法有3个特征:1)将约束优化问题转化为等价的动态约束多目标优化问题,然后用动态约束多目标演化算法求解动态约束多目标优化问题;2)演化初始阶段,拓宽约束边界以使整个种群可行;演化过程中,约束边界微弱的收缩以确保动态约束多目标演化算法中种群的大多数个体仍是可行的,这使动态约束多目标演化算法如同多目标演化算法求解无约束问题一样有效;3)采用基于学习的机制自适应调整演化算法的参数,以提高算法效率.实验结果表明,与4个当前较为先进的约束处理算法相比,本文算法效果更优

References

[1]  TAKAHAMA T,SAKAI S.Efficient constrained optimization by theεconstrained adaptive differential evolution[C]//IEEE Congress on Evolutionary Computation(CEC’2010).Washington D C:IEEE,2010:2052-2059.
[2]  MALLIPEDDI R,SUGANTHAN P N,QU B Y,et al.Diversity enhanced adaptive evolutionary programming for solving single objective constrained problems[C]//IEEE Congress on Evolutionary Computation(CEC’2009).Washington D C:IEEE,2009:2106-2113.
[3]  XIAO J,XU J,SHAO Z,et al.A genetic algorithm for solving multi-constrained function optimization problems based on KS function[C]//IEEE Congress on Evolutionary Computation(CEC’2007).Washington D C:IEEE,2007:4497-4501.
[4]  DEB K,DATTA R.A fast and accurate solution of constrained optimization problems using a hybrid biobjective and penalty function approach[C]//IEEE Congress on Evolutionary Computation(CEC’2010).Washington D C:IEEE,2010:1-8.
[5]  HE Q,WANG L.A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J].Applied Mathematics and Computation,2007,186(2):1407-1422.
[6]  RODRIGUES M D,DE LIMA B S,GUIMARAES S,et al.Balanced ranking method for constrained optimization problems using evolutionary algorithms[J].Information Sciences,2016,327(12):71-90.
[7]  VENKATRAMAN S,YEN G G.A generic framework for constrained optimization using genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2005,9(4):424-435.
[8]  STORN R,PRICE K V.Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
[9]  MALLIPEDDI R,SUGANTHAN P N.Problem Definitions And Evaluation Criteria for the CEC2010 Competition on Constrained Real-Parameter Optimization[R].Singapore:Nanyang Technological University,2010.
[10]  WEI W,WANG J,TAO M.Constrained differential evolution with multiobjective sorting mutation operators for constrained optimization[J].Applied Soft Computing,2015,33(C):207-222.
[11]  RUNARSSON T P,YAO X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolutionary Computation,2000,4(3):284-294.
[12]  COELLO C A.Constraint-handling using an evolutionary multiobjective optimization technique[J].Civil Engineering Systems,2000,17(4):319-346.
[13]  ZHANG W,YEN G G,HE Z,et al.Constrained optimization via artificial immune system[J].IEEE Transactions on Systems,Man,and Cybernetics,2014,44(2):185-198.
[14]  WANG Y,CAI Z X,GUO G R,et al.Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2007,37(3):560-575.DOI:101109/TSMCB.2006.886164.
[15]  WANG Y,CAI Z X.Combining multiobjective optimization with differential evolution to solve constrained optimization problems[J].IEEE Transactions on Evolutionary Computation,2012,16(1):117-134.DOI:101109/TEVC.2010.2093582.
[16]  GAO W F,YEN G G,LIU S Y.A dual-population differential evolution with coevolution for constrained optimization[J].IEEE Transactions on Cybernetics,2015,45(5):1108-1121.
[17]  閤大海,李元香,刘伟.求解约束优化问题的加速CMODE算法[J].华中科技大学学报(自然科学版),2016,44(4):48-52.XIA D H,LI Y X,LIU W.Accelerated CMODE algorithm for solving constrained optimization problems[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2016,44(4):48-52(Ch).
[18]  DEB K.Multi-objective Optimization Using Evolutionary Algorithms[M].Chichester:John Wiley&Sons,2001.
[19]  DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[20]  ZHANG J,SANDERSON A C.JADE:Adaptive differential evolution with optional external archive[J].IEEE Transactions on Evolutionary Computation,2009,13(5):945-958.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133