全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于Sentinel-1 SAR的埃默里冰架前端位置自动检测研究
Amery Ice Shelf Frontal Position Automatic Detection from Sentinel-1 SAR Imagery

DOI: 10.13203/j.whugis20180171

Keywords: 合成孔径雷达,冰架前端,Sentinel-1,埃默里冰架,
synthetic aperture radar
,ice shelf frontal line,Sentinel-1,Amery ice shelf

Full-Text   Cite this paper   Add to My Lib

Abstract:

埃默里冰架(Amery ice Shelf,AIS)是南极洲第三大冰架,冰架状态影响着南极洲物质平衡和海平面变化,但目前对于AIS与海水交界的冰架前端位置确定研究甚少。基于哨兵一号(Sentinel-1)合成孔径雷达(synthetic aperture radar,SAR)影像提出了一种高效且精确的冰架前端自动检测方法,利用冰架和海水之间的过渡带的SAR后向散射系数分布特点,利用Sentinel-1 SAR影像并结合单元最小恒虚警率(smallest of constant false alarm rate,SO-CFAR)和形态学滤波得到冰水二值图,采用滑动窗口和累积和的方法自动提取每条剖面线对应的冰架前端点位置,自动绘制AIS前端轮廓线。考虑SAR影像空间分辨率和剖面分辨率等因素对前端检测的影响,进行冰架前端参数优化,并分析有无浮冰对冰架前端提取精度的影响。为了验证影像空间分辨率对各种方法检测结果的影响,将AIS前端无碎冰的影像进行双线性内插法重采样处理,并与基于标准差与五大值法的冰架前端提取算法进行精度对比分析。实验证明提出的剖面法具有一定的适用性。此外,通过分析AIS前端有无碎冰发现,基于SO-CFAR和形态学滤波算法相结合的剖面法对冰架前端提取精度最佳,最优检测精度小于1个像素,且受表面融水、冰架破碎等较小,具有较强的场景适应性

References

[1]  Bamber J L, Aspinall W P. An Expert Judgement Assessment of Future Sea Level Rise from the Ice Sheets[J]. Nature Climate Change, 2013, 3(4):424-427
[2]  Church J A, Ding Y, Chen D, et al. Sea Level Change, in Climate Change 2013:The Physical Science Basis, Contribution of Working Group I to the Fifth[M]. Cambridge:Cambridge University Press, 2013
[3]  Williams M J M, Warner R C, Budd W F. Sensitivity of the Amery Ice Shelf Antarctica to Changes in the Climate of the Southern Ocean[J]. J Climate, 2002, 15(19):2740-2757
[4]  Zhao C, Cheng X, Hui F M, et al. Monitoring the Amery Ice Shelf Front During 2004-2012 Using Envisat ASAR Data[J]. Advance in Polar Science, 2013, 24(2):133-137
[5]  Budd W. The Dynamics of the Amery Ice Shelf[J]. Journal of Glaciology, 1996, 6(45):335-358
[6]  Wen J, Wang Y, Wang W, et al. Basal Melting and Freezing Under the Amery Ice Shelf, East Antarctica[J]. Journal of Glaciology, 2010, 56(195):81-90
[7]  Seale A, Christoffersen P, Mugford R I, et al. Ocean Forcing of the Greenland Ice Sheet:Calving Fronts and Patterns of Retreat Identified by Automatic Satellite Monitoring of Eastern Outlet Glaciers[J]. Journal of Geophysical Research:Earth Surface, 2011, 116(F3):1-16
[8]  Kachouie N N, Huybers P, Schwartzman A. Locali-zation of Mountain Glacier Termini in Landsat Multi-spectral Images[J]. Pattern Recognition Letters, 2012, 34(1):94-106
[9]  Jackson C R, Apel J R. Synthetic Aperture Radar Marine User's Manual[OL]. http://www.sarusersmanual.com,2004
[10]  Geudtner D, Torres R, Snoeij P, et al. Sentinel-1 System Capabilities and Applications[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2014
[11]  Liu Y, Moore J C, Cheng X, et al. Ocean-Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11):3263-3268
[12]  Han L, Floricioiu D, Baessler M,et al. An Algorithm for the Detection of Calving Glaciers Frontal Position from TerraSAR-X Imagery[C]. International Geoscience and Remote Sensing Symposium IEEE, Beijing, China, 2016
[13]  Lemke P, Ren J, Alley R B, et al. Climate Change 2007:The Physical Science Basis[OL]. http://www.ipcc.ch/report/ar4/wg1,2007
[14]  He Chu, Zhang Yu, Liao Ziqian, et al. Compressing Sensing Based CFAR Target Detection Algorithm for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):878-882(何楚, 张宇, 廖紫纤,等. 基于压缩感知的SAR图像CFAR目标检测算法[J]. 武汉大学学报·信息科学版, 2014, 39(7):878-882)
[15]  Joughin I, Smith B E, Medley B. Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica[J]. Science, 2014, 344(6185):735-738
[16]  Bassis J N, Coleman R, Fricker H A, et al. Episodic Propagation of a Rift on the Amery Ice Shelf,East Antarctica[J]. Geophysical Research Letters, 2005, 32(6):347-354
[17]  Fricker H A, Young N W, Allison I, et al. Iceberg Calving from the Amery Ice Shelf, East Antarctica[J]. Annals of Glaciology, 2002, 34(1):241-246
[18]  Deng Fanghui, Zhou Chunxia, Wang Zemin, et al. Ice-Flow Velocity Derivation of the Confluence Zone of the Amery Ice Shelf Using Offset-Tracking Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):901-906(邓方慧, 周春霞, 王泽民, 等. 利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J].武汉大学学报·信息科学版, 2015, 40(7):901-906)
[19]  Herraiz-Borreguero L, Church J A, Allison I, et al. Basal Melt, Seasonal Water Mass Transformation, Ocean Current Variability and Deep Convection Processes Along the Amery Ice Shelf Calving Front, East Antarctica[J]. Journal of Geophysical Research:Oceans, 2016, 121(7):4946-4965
[20]  Fricker H A, Hyland G, Coleman R, et al. Digital Elevation Models for the Lambert Glacier-Amery Ice Shelf System, East Antarctica, from ERS-1 Satellite Radar Altimetry[J]. Journal of Glaciology, 2002, 46:553-560
[21]  Yu J, Liu H X, Jezek K C, et al. Analysis of Velocity Field, Mass Balance, and Basal Melt of the Lambert Glacier-Amery Ice Shelf System by Incorporating Radarsat SAR Interferometry and ICESat Laser Altimetry Measurements[J]. Journal of Geophysical Research:Atmospheres, 2010, 115(B111):1-16
[22]  Fricker H A, Young N W, Allison I, et al. Iceberg Calving from the Amery Ice Shelf, East Antarctica[J]. Annals of Glaciology, 2002, 34(1):241-246
[23]  Williams M J M, Warner R C, Budd W F. Sensitivity of the Amery Ice shelf, Antarctica, to Changes in the Climate of the Southern Ocean[J]. J Climate, 2002, 15(19):2740-2757
[24]  Scambos T, Hulbe C, Fanhnestock M, et al. The Link Between Climate Warming and Break-up of Ice Shelves in the Antarctic Peninsula[J]. Journal of Glaciology, 2000, 46:516-530
[25]  Qin X, Zou H, Zhou S, et al. A Generalized Gamma Distributed CFAR Algorithm for Layover and Shadow Detection in InSAR Images[J]. Lecture Notes in Electrical Engineering, 2013, 256:173-180
[26]  Pitas I. Digital Image Processing Algorithms and Applications[M]. New York:John Wiley& Sons, 2002
[27]  Liu H, Jezek K C. A Complete High-Resolution Coastline of Antarctica Extracted from Orthorectified Radarsat SAR Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(5):605-616
[28]  Wang Qinghua,Ning Jinsheng,Ren Jiawen. Re-de-finition and Validation of the Grounding Line of Amery Ice Shelf,East Antarctica[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6):591-597(王清华, 宁津生, 任贾文, 等. 东南极Amery冰架与陆地冰分界线的重新划定及验证[J].武汉大学学报·信息科学版,2002, 27(6):591-597)
[29]  Chow C K, Kaneko T. Automatic Boundary Detection of the Left Ventricle from Cineagiograms[J]. Computer and Biomedical Research, 1972, 5(4):388-410
[30]  Gonzalez R C, Woods R E. Digital Image Processing[M]. MA:Addison-Wesley, 2004
[31]  Joughin I R, Smith B E, Abdalati W. Glaciological Advances Made with Interferometric Synthetic Aperture Radar[J]. Journal of Glaciology, 2010,56:1026-1042
[32]  Sohn H G, Jezek K C. Mapping Ice Sheet Margins from ERS-1 SAR and SPOT Imagery[J]. International Journal of Remote Sensing, 1999, 20:3201-3216
[33]  Haverkamp D, Soh L K, Tsatoulis C. A Comprehensive, Automated Approach to Determining Sea Ice Thickness from SAR Data[J].IEEE Transactions on Geoscience and Remote Sensing, 1995, 33:46-57
[34]  Rosenau R. Investigation of Flow Velocity and Frontal Position of the Large Outflow Glaciers of Greenland by Means of Multitemporal Landsat Surveys[D]. Dresden:Technical University of Dresden, 2013
[35]  Moreira A. Digital Beamforming:A Paradigm Shift for Spaceborne SAR[C]. 14th International Radar Symposium (IRS), Dresden, Germany, 2013
[36]  Zhang Xin, Zhou Chunxia, E Dongchen, et al. Monitoring the Change of Antarctic Ice Shelves and Coastline Based on Multiple-source Remote Sensing Data[J]. Chinese J Geophys,2013,56(10):3302-3312(张辛, 周春霞, 鄂栋臣, 等. 基于多源遥感数据的南极冰架与海岸线变化监测[J]. 地球物理学报, 2013, 56(10):3302-3312)
[37]  Zheng Shaojun, Shi Jiuxin, Jiao Yutian, et al. Spatial Distribution of Ice Shelf Water in Front of the Amery Ice Shelf, Antarctica in Summer[J]. Chinese Journal of Oceanology & Limnology, 2011, 29(6):1325-1338

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133