全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

条件植被温度指数的多尺度特性分析与应用
Analysis and Application of the Multi-scale Characteristics of Vegetation Temperature Condition Index

DOI: 10.13203/j.whugis20160105

Keywords: 条件植被温度指数,干旱影响评估,小波功率谱,主振荡周期,小波互相关度,
vegetation temperature condition index
,impact assessment of drought,wavelet power spectrum,main oscillation period,wavelet cross-correlation degree

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于2008-2013年关中平原冬小麦单产数据和条件植被温度指数(vegetation temperature condition index,VTCI)的干旱监测结果,分别采用Morlet、Mexican Hat和Paul (m=4)3种非正交小波的功率谱分析冬小麦单产和主要生育期VTCI和单产的多时间尺度特征,借助小波互相关度进一步确定两个时间序列在时频域局部相关的密切程度,并以此构建主要生育期加权VTCI与冬小麦单产间的线性回归模型。结果表明,基于同一小波函数确定的主要生育期VTCI的振荡能量不同,而基于不同小波函数确定的同一生育期VTCI的主振荡周期及其与单产对应的小波互相关系数也存在差异,但各生育时期VTCI均存在着6 a左右的主振荡周期。基于Paul (m=4)小波的各生育时期VTCI与单产时间序列的多尺度相关性分析的效果最佳(R2=0.521),且Paul (m=4)对应的模型的单产估测结果与实测单产的平均相对误差较之于Morlet和Mexican Hat小波函数获得的相对误差分别降低了0.78%和0.30%,表明Paul (m=4)小波函数能更好地用于干旱对冬小麦单产的影响评估研究,也可用于多尺度的干旱影响评估研究

References

[1]  Liang S, Ge S, Wan L, et al. Can Climate Change Cause the Yellow River to Dry Up?[J]. <em>Water Resources Research</em>, 2010, 46(2):228-236
[2]  Zhang Jianfeng, Cui Shujun, Li Guomin. Frequently-used Wavelets and Their Time-frequency Properties[J], <em>Earth Science Frontiers</em>, 2012, 19(6):248-253(张建峰, 崔树军, 李国敏. 常用小波及其时-频特性[J]. 地学前缘, 2012, 19(6):248-253)
[3]  Sang Yanfang, Wang Dong, Wu Jichun, et al. Wavelet Cross-correlation Method for Hydrologic Time Series Analysis[J]. <em>Journal of Hydraulic Engineering</em>, 2010, 41(11):1272-1279(桑燕芳, 王栋, 吴吉春, 等. 水文时间序列小波互相关分析方法[J]. 水利学报, 2010, 41(11):1272-1279)
[4]  Li Yan, Wang Pengxin, Liu Junming, et al. Evaluation of Drought Monitoring Effects in the Main Growing Stages of Winter Wheat by Using the Vegetation Temperature Vegetation Temperature Condition Index-Ⅱ. Improved Analytic Hierarchy Process and Variation Coefficient Method[J]. <em>Agricultural Research in the Arid Areas</em>, 2014, 32(1):236-239, 262(李艳, 王鹏新, 刘峻明, 等. 基于条件植被温度指数的冬小麦主要生育期干旱监测效果评价——Ⅱ.改进的层次分析法和变异系数法组合赋权[J]. 干旱地区农业研究, 2014, 32(1):236-239, 262)
[5]  Torrence C, Compo G P. A Practical Guide to Wavelet Analysis[J]. <em>Bulletin of the American Meteorological Society</em>, 1998, 79(1):61-78
[6]  Schleif F M, Lindemann M, Diaz M, et al. Support Vector Classif?cation of Proteomic Prof?le Spectra Based on Feature Extraction with the Bi-orthogonal Discrete Wavelet Transform[J]. <em>Computing and Visualization in Science</em>, 2009, 12(4):188-199
[7]  Huang Xin, Zhang Liangpei, Li Pingxiang. Metho-ds for Classification of the High Spatial Resolution Remotely Sensed Images Based on Wavelet Transform[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2006, 31(1):66-69(黄昕, 张良培, 李平湘.基于小波的高分辨率遥感影像纹理分类方法研究[J]. 武汉大学学报·信息科学版, 2006, 31(1):66-69)
[8]  Mi X C, Ren H B, Ouyang Z S, et al. The Use of the Mexican Hat and the Morlet Wavelets for Detection of Ecological Patterns[J]. <em>Plant Ecology</em>, 2005, 179(1):1-19
[9]  Jiang G, Xiao J, Song C L, et al. A kind of Non-orthogonal Complex Wavelet Kernel Function and Its Application in Nonlinear System Parameters Identification[J]. <em>Journal of System Simulation</em>, 2006, 18(9):2550-2554
[10]  Xie Yi, Wang Pengxin, Liu Junming, et al. Winter Wheat Yield Estimation Based on Assimilation Method Combined with 4DVAR and EnKF[J]. <em>Transactions of the Chinese Society of Agricultu-ral Engineering</em>, 2015, 31(1):187-195(解毅, 王鹏新, 刘峻明, 等. 基于四维变分和集合卡尔曼滤波同化方法的冬小麦单产估测[J]. 农业工程学报, 2015, 31(1):187-195)
[11]  Luo Jiancheng, Zhou Chenghu, Shen Zhanfeng, et al. Theoretic and Methodological Review on Sensor Information Tupu Computation[J]. <em>Journal of Geo-information Science</em>, 2009, 11(5):664-669(骆剑承, 周成虎, 沈占锋, 等. 遥感信息图谱计算的理论方法研究[J]. 地球信息科学学报, 2009, 11(5):664-669)
[12]  Piao Shilong, Ciais P, Yao H, et al. The Impacts of Climate Change on Water Resources and Agriculture in China[J]. <em>Nature</em>, 2010, 467(7311):43-51
[13]  Yang Xuebin, Qin Qiming, Yao Yunjun, et al. Comparison and Application of PDI and MPDI for Drought Monitoring in Inner Mongolia[J]. <em>Geoma-tics and Information Science of Wuhan University</em>, 2011, 36(2):195-198(杨学斌, 秦其明, 姚云军, 等. PDI与MPDI在内蒙古干旱监测中的应用和比较[J]. 武汉大学学报·信息科学版, 2011, 36(2):195-198)
[14]  Yang Shaoe, Yan Nana, Wu Bingfang. Advances in Agricultural Drought Monitoring by Remote Sen-sing[J]. <em>Remote Sensing Information</em>, 2010(1):103-109(杨绍锷, 闫娜娜, 吴炳方. 农业干旱遥感监测研究进展[J]. 遥感信息, 2010(1):103-109)
[15]  Wang Pengxin, Gong Jianya, Li Xiaowen. Vegetation Temperature Condition Index and Its Application for Drought Monitoring[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2001, 26(5):412-418(王鹏新, 龚健雅, 李小文. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报·信息科学版, 2001, 26(5):412-418)
[16]  Peng J, Loew A, Zhang S Q, et al. Spatial Downscaling of Satellite Soil Moisture Data Using a Vegetation Temperature Condition Index[J]. <em>IEEE Transactions on Geoscience and Remote Sensing</em>, 2016, 54(1):558-566
[17]  Fang Shenghui, Le Yuan, Liang Qi. Retrieval of Chlorophyll Content Using Continuous Wavelet Analysis Across a Range of Vegetation Species[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2015,40(3):296-302(方圣辉, 乐源, 梁琦. 基于连续小波分析的混合植被叶绿素反演[J]. 武汉大学学报·信息科学版, 2015, 40(3):296-302)
[18]  Sun Wei, Wang Pengxin, Han Lijuan, et al. Further Improvement of the Approach to Monitoring Drought Using Vegetation and Temperature Condition Indexes from Multi-years' Remotely Sensed Data[J]. <em>Transactions of the CSAE</em>, 2006, 22(2):22-26(孙威, 王鹏新, 韩丽娟, 等. 条件植被温度指数干旱监测方法的完善[J]. 农业工程学报, 2006, 22(2):22-26)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133