|
- 2017
面向卫星云图云分类的自适应模糊支持向量机
|
Abstract:
云类识别是实现卫星云图自动分析的基础,针对卫星云图易受噪声干扰且不同云系往往相互交叠的特点,构造一种面向云类识别的自适应模糊支持向量机。该方法不仅改进了隶属度函数的表现形式,而且通过定义控制临界隶属度和隶属度衰减趋势的参数,使隶属度能根据不同云系样本的具体分布特性自适应调整,解决了传统模糊支持向量机的隶属度函数难以反映样本分布的问题。在MTSAT卫星云图上的实验结果表明,通过提取云图可见光通道的反照率、红外通道的亮温及三种亮温差作为云图的光谱特征,并结合统计纹理特征,所构造的自适应模糊支持向量机分类器能有效区分晴空区、低云、中云、高云及直展云;云类识别准确率优于标准支持向量机和传统模糊支持向量机,且具有更强的稳定性和自适应性
[1] | Ameur Z, Ameur S, Adane A, et.al. Cloud Classification Using the Textural Features of Meteosat images[J]. International Journal of Remote Sensing, 2004, 25(21):4 491-4 503 |
[2] | Merchant C J, Harris A R, Maturi E, et al. Probabilistic Physically Based Cloud Screening of Satellite Infrared Imagery for Operational Sea Surface Temperature Retrieval[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(611):2 735-2 755 |
[3] | Liu Y, Xia J, Shi C X,et al, An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network[J]. Sensors, 2009, 9(7):5 558-5 579 |
[4] | Zhang Xiang, Xiao Xiaoling, Xu Guangyou. Determination and Analysis of Fuzzy Membership for SVM[J].Journal of Image and Graphics, 2006, 11(8):1 188-1 192 (张翔, 肖小玲, 徐光祐. 模糊支持向量机中隶属度的确定与分析[J]. 中国图象图形学报, 2006, 11(8):1 188-1 192) |
[5] | Zhang Xiang, Xiao Xiaoling, Xu Guangyou. Fuzzy Support Vector Machine Based on Affinity Among Samples[J].Journal of Software, 2006, 17(5):951-958 (张翔, 肖小玲, 徐光祐. 基于样本之间紧密度的模糊支持向量机方法[J]. 软件学报, 2006, 17(5):951-958) |
[6] | An W J, Liang M G. Fuzzy Support Vector Machine Based on Within-class Scatter for Classification Problems with Outliers or Noises[J]. Neurocomputing, 2013,110(13):101-110 |
[7] | Ai Qing, Qin Yuping, Fang Hui, et al. An Extended Affinity Fuzzy Support Vector Machine and Its Application in Text Classification[J]. Computer Application and Software. 2010, 27(4):45-47(艾青, 秦玉平, 方辉,等. 一种扩展的紧密度模糊支持向量机及其在文本分类中应用[J]. 计算机应用与软件, 2010, 27(4):45-47) |
[8] | Lior W, Tal H, Yaniv T. Descriptor Based Methods in the Wild[J]. Workshop on Faces in‘Real-Life’ Images:Detection, Alignment, and Recognition, 2008,6(10):12-18 |
[9] | Salim L, Mounir B. Comparison of ANFIS and SVM for the Classification of Brain MRI Pathologies[C]. 2011 IEEE 54<sup>th</sup> International Midwest Symposium on Circuits and Systems, Seoul, Korea, 2011 |
[10] | Tax D, Duin R. SupportVector Data Description[J]. Machine Learning, 2004, 54(1):45-66 |
[11] | Lin C F, Wang S D. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2):464-471 |
[12] | Tapakis R, Charalambides A G. Equipment and Methodologies for Cloud Detection and Classification:A Review[J]. Solar Energy, 2013, 95(5):392-430 |
[13] | Thomas F, Remy R. An Algorithm for the Detection and Tracking of Tropical Mesoscale Convective Systems Using Infrared Images from Geostationary Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 7 (51):4 302-4 315 |
[14] | Kazantzidis A, Tzoumanikas P, Bais A F, et al. Cloud Detection and Classification with the Use of Whole-sky Ground-based Images[J]. Atmospheric Research, 2012, 113(1):80-88 |
[15] | Luis G C, Gustavo C V, Lorenzo B, et al. Mean Map Kernel Methods for Semisupervised Cloud Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):207-220 |
[16] | Chen Gang, E Dongchen. Cloud Detection Based on Texture Analysis and SVM over Ice-snow Covered Area[J].Geomatics and Information Science of Wuhan University, 2006, 31(5):403-406(陈刚,鄂栋臣. 基于纹理分析和支持向量机的极地冰雪覆盖区的云层检测[J]. 武汉大学学报·信息科学版,2006, 31(5):403-406) |