|
- 2017
基于粗集的多尺度空间拓扑关系 不确定性定量评价模型
|
Abstract:
空间拓扑关系不确定性的定量评价可为多尺度拓扑关系一致性的自动评价、空间推理与空间查询等应用的可靠性提供依据。定义了基于几何度量的拓扑距离,构建了拓扑关系不确定性的粗集表达模型;提出了不确定性粗集表达中拓扑距离的量化方法;进而提出了基于粗集的多尺度空间拓扑关系不确定性度量指标。实例研究证明了本文提出模型的科学性与合理性,该方法可用于多尺度表达过程中引起的拓扑关系不确定性的定量评价
[1] | Du Xiaochu, Xiong Jianguo. Evaluation Model on Equivalency of Spatial Topological Relations in Multiple Representation[J]<em>.Science of Surveying and Mapping, </em>2007,32(5):70-72(杜晓初,熊建国. 多尺度表达中空间拓扑关系等价性评价模型[J]. 测绘科学,2007,32(5):70-72) |
[2] | Xu Feng, Niu Jiqiang. Quantitative Evaluation Model of the Uncertainty of Multi-granularity Space Direction Relations Based on Rough-Set [J]. <em>Geomatics and Information Science of Wuhan University</em>, 2015, 40(7): 971-976(徐丰,牛继强,李卓凡.基于粗集的多粒度空间方向关系不确定性定量评价模型[J]. 武汉大学学报·信息科学版,2015, 40(7):971-976) |
[3] | Chui K C, Shi Wenzhong. Estimation of the Positional Uncertainty in Line Simplification in GIS [J].<em> The Cartographic Journal, </em>2004, 41(1): 37-45 |
[4] | Du Shihong, Wang Qiao, Wei Bin, et al. Spatial Orientational Relations Rough Reasoning[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2003, 32(4):334-338(杜世宏,王桥,魏斌,等. 空间方向关系粗糙推理[J].测绘学报,2003,32(4):334-338) |
[5] | Zhang Guoqin, Zhu Changqing, Li Guozhong. Measurement Indexes of Positional Uncertainty for Plane Line Segment Based on <em>ε_m</em> Model[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2009,34(4): 431-435(张国芹,朱长青,李国重. 基于<em>ε_m</em>模型的线元位置不确定性度量指标[J]. 武汉大学学报·信息科学版,2009,34(4):431-435) |
[6] | Mozas A T, Ariza F J. New Method for Positional Quality Control in Cartography Based on Lines: A Comparative Study of Methodologies [J].<em> International Journal of Geographical Information Science, </em>2011, 25 (10/12) : 1 681-1 695 |
[7] | Molenaar M. An Introduction to the Theory of Spatial Object Modeling for GIS [M]. Boca Raton, USA: Chemical Rubber Company Press, 1998 |
[8] | He Jianhua, Liu Yaolin, Yu Yan, et al.The Topological Relation Model for Indeterminate Geographical Objects Based on Fuzzy Close-degree[J].<em> Acta Geodaetica et Cartographica Sinica</em>, 2008, 37(2):212-216(何建华,刘耀林,俞艳,等.基于模糊贴近度分析的不确定拓扑关系表达模型[J].测绘学报,2008,37(2):212-216) |
[9] | Lv Xiuqin, Wu Fan. Representation of Topological Similarity Relationships for Spatial Objects in Multi-scale Representation[J].<em>Journal of Geomatics, </em>2006, 31(2):29-31(吕秀琴,吴凡.多尺度空间对象拓扑相似关系的表达与计算[J].测绘信息与工程,2006,31(2):29-31) |
[10] | Deng Min, Li Zhilin, Cheng Tao. Routh-Set Representation of GIS Data Uncertainties with Multiple Granularities[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2006, 35(1):64-70 (邓敏,李志林,程涛.多粒度的GIS数据不确定性粗集表达[J].测绘学报,2006,35(1):64-70) |
[11] | Deng Min, Liu Wenbao, Feng Xuezhi. A Generic Model Describing Topological Relations Among Area Objects in GIS[J]. <em>Acta Geodaetica et Cartographica Sinica, </em>2005, 34(1):85-90(邓敏,刘文宝,冯学智. GIS面目标间拓扑关系的形式化模型[J].测绘学报,2005,34(1):85-90) |
[12] | Deng Min, Xu Rui, Li Zhilin. A Spatial-Query-Driven Transformation Metric Spatial Relations and Natural Language Spatial Relations: Taking Regions as Example [J]<em>.Acta Geodaetica et Cartographica Sinica, </em>2009, 38(6): 527-531(邓敏,徐锐,李志林,等.空间查询中自然语言空间关系与度量空间关系的转换方法研究:以面目标为例[J].测绘学报,2009,38(6):527-531) |
[13] | Xu Feng, Niu Jiqiang. Uncertainty Analysis Models for Multi-scale Representation of Spatial Data[M]. Wuhan: Wuhan University Press, 2014:146-185(徐丰,牛继强.空间数据多尺度表达的不确定性分析模型[M].武汉:武汉大学出版社,2014:146-185) |
[14] | Clarke B L. A Calculus of Individuals Based on Connection [J].<em> Norte Dame Journal of Formal Logie, </em>1981, 2(3): 287-296 |
[15] | Wu Huayi, Liu Bo, Li Dajun, et al. Topological Relations of Spatial Objects: A Review[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(11):1 269-1 276(吴华意, 刘波, 李大军,等. 空间对象拓扑关系研究综述[J]. 武汉大学学报·信息科学版, 2014, 39(11):1 269-1 276) |
[16] | Cohn A G, Gotts N M. The “Egg-Yolk” Representation of Regions with Indeterminate Boundaries [M]//Burrough P A, Frank A U(eds). Geographic Objects with Indeterminate Boundaries. London, UK: Taylor & Francisco, 1996 |
[17] | Du Xiaochu. Research on Equivalency of Spatial Topological Relations in Multiple Representation[D]. Wuhan :Wuhan University, 2005(杜晓初. 多重表达中空间拓扑关系等价性研究[D].武汉大学,2005) |
[18] | Gao Zhenji, Wu Lun, Yang Jian. Representation of Topological Relations Between Vague Objects Based on Rough and RCC Model[J]. <em>Acta Scientiarum Naturalium Universitatis Pekinensis,</em> 2008, 44(4): 597-603(高振记,邬伦,杨俭.基于RCC及粗糙模型的模糊地理对象拓扑关系表达[J].北京大学学报(自然科学版),2008,44(4):597-603) |
[19] | Guo Jifa, Liu Yujie, Mao Jian, et al. Formalization Research of Topological Relation Between High Order Fuzzy Regions[J]. <em>Geomatics and Information Science of Wuhan University, </em>2014, 39(2):196-200(郭继发, 刘玉洁, 毛健,等. 高阶模糊区域的交叉拓扑关系形式化研究[J]. 武汉大学学报·信息科学版, 2014, 39(2):196-200) |
[20] | Liu Wenbao, Dai Honglei, Xu Panlin. The Analytic Exprssion of Geometric Figure on Planar Lines Error Band[J].<em> Acta Geodaetica et Cartographica Sinica, </em>1998, 27(3):231-237(刘文宝, 戴洪磊, 徐泮林,等.平面线位误差带几何形状的解析表达[J].测绘学报,1998,27(3):231-237) |
[21] | Wu Lun, Gao Zhenji, Shi Wenzhong, et al. The Uncertainty Problem in Geographic Information System [M]. Beijing: Electronics Industry Press, 2010:170-190(邬伦,高振记,史文中,等.地理信息系统中的不确定性问题[M].北京:电子工业出版社,2010:170-190) |
[22] | Jin Biao, Hu Wenlong. A Quantified Model for Spatial Relationships[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(7):879-882(金标, 胡文龙. 一种定量化表达的空间关系模型[J]. 武汉大学学报·信息科学版, 2013, 38(7):879-882) |
[23] | Shi Wenzhong. The Uncertainty Principle of Spatial Data and Spatial Analysis[M]. Beijing: Science Press,2005:245-270(史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社, 2005:245-270) |
[24] | Egenhofer M, Clementini E, Di Felice P. Evaluating Inconsistencies Among Multiple Representations [C]. 6th International Symposium on Spatial Data Handling, Edinburgh ,Scotland, 1994 |
[25] | Egenhofer M, Franzosa R D. Point-Set Topological Spatial Relations [J]<em>. International Journal of Geographical Information Systems,</em> 1991,5(2):161-174 |
[26] | Egenhofer M. A Model for Detailed Binary Topological Relationships [J]<em>. Geomatic, </em>1993, 47(3): 261-273 |