全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

集成多源地理大数据感知城市空间分异格局
Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space

DOI: 10.13203/j.whugis20170383

Keywords: 地理大数据,空间分异,社会感知,城市,
big geo-data
,spatial heterogeneity,social sensing,urbanspace

Full-Text   Cite this paper   Add to My Lib

Abstract:

多源地理大数据为地理现象的分布格局、相互作用及动态演化提供了前所未有的社会感知手段。城市是人类活动最为集中的区域,产生了多种地理大数据,并支持对于城市空间的理解。城市内部的分异格局是城市研究和规划所要面对的重要议题,社会感知数据提供了从"人-地-静-动"4个维度刻画城市分异格局的途径。梳理了不同类型大数据对于表达这4个维度特征的支持,并借鉴"生态位"模型,通过一个实例研究展示了集成多源数据量化城市空间分异特征的应用,最后讨论了相关的理论问题

References

[1]  Mitchell L, Frank M, Harris, K, et al. The Geography of Happiness:Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place[J]. <em>PLoS ONE</em>, 2013, DOI:10.1371/journal.pone.0064417
[2]  Zhong C, Arisona S M, Huang X, et al. Detecting the Dynamics of Urban Structure through Spatial Network Analysis[J]. <em>International Journal of Geographical Information Science</em>, 2014, 28(11):2178-2199
[3]  Cai H, Zhan X, Zhu J, et al. Understanding Taxi Travel Patterns[J]. <em>Physica A:Statistical Mechanics and its Applications</em>, 2016, 457:590-597
[4]  Breiman L.Random Forests[J].<em>Machine Learning</em>, 2001, 45(1):5-32
[5]  Openshaw S. TheModifiable Areal Unit Problem[M].Norwick:Geo Books,1983
[6]  Armhein C. Searching for the Elusive Aggregation Effect:Evidence from Statistical Simulations[J].<em>Environment & Planning A</em>, 1995, 27(1):105-119
[7]  Reades J, Calabrese F, Ratti, C. Eigenplaces:Analysing Cities Using the Space-Time Structure of the Mobile Phone Network[J]. <em>Environment and Planning B:Planning and Design</em>, 2009,36:824-836
[8]  Toole J L, Ulm M, Gonzale Z, et al. Inferring Land Use from Mobile Phone Activity[C]. The ACM SIGKDD International Workshop on Urban Computing, Beijing, 2012
[9]  Zhu D, Wang N, Wu L, et al. Street as a Big Geo-Data Assembly and Analysis Unit in Urban Studies:A Case Study Using Beijing Taxi Data[J]. <em>Applied Geography</em>, 2017, 86:152-164
[10]  Goodchild M F. Citizens as Sensors:The World of Volunteered Geography[J]. <em>Geo Journal</em>, 2007, 69(4):211-221
[11]  Liu Y, Liu X, Gao S, et al. Social Sensing:A New Approach to Understanding our Socioeconomic Environments[J]. <em>Annals of the Association of American Geographers</em>, 2015, 105(3):512-530
[12]  Lansley G, Longley P A. The Geography of Twitter Topics in London[J]. <em>Computers, Environment and Urban Systems</em>, 2016, 58:85-96
[13]  Long Y, Shen Z. Geospatial Analysis to Support Urban Planning in Beijing[M].Switzerland:GeoJournal Library, 2015
[14]  Shi L, Chi G, Liu X, et al. Human Mobility Patterns in Different Communities:A Mobile Phone Data-Based Social Network Approach[J].<em>Annals of GIS</em>, 2015. 21(1):15-26
[15]  Kang C, Liu Y, Ma X, et al. Towards Estimating Urban Population Distributions from Mobile Call Data[J]. <em>Journal of Urban Technology</em>.2012, 19(4):3-21
[16]  Deville P, Linard C, Martin S, et al. Dynamic Population Mapping Using Mobile Phone Data[J]. <em>Proceedings of the National Academy of Sciences of the United States of America</em>, 2014,111(45):15888-15893
[17]  Miller H J, Goodchild M F. Data-Driven Geography[J].<em>Geo Journal</em>, 2015, 80(4):449-461
[18]  Liu Yu. Revisiting Several Basic Geographical Concepts:A Social Sensing Perspective[J]. <em>Acta Geographica Sinica</em>, 2016, 71(4):564-575(刘瑜. 社会感知视角下的若干人文地理学基本问题再思考[J].地理学报, 2016, 71(4):564-575)
[19]  Ratti C, Frenchman D, Pulselli R M, et al.Mobile Landscapes:Using Location Data from Cell Phones for Urban Analysis[J]. <em>Environment and Planning B:Planning and Design</em>, 2006, 33(5):727-748
[20]  Liu Y, Wang F, Xiao Y, et al. Urban Land Uses and Traffic ‘Source Sink Areas’:Evidence from GPS-enabled Taxi Data in Shanghai[J]. <em>Landscape and Urban Planning</em>, 2012, 106(1):73-87
[21]  Pei T, Sobolevsky S, Ratti C, et al. A New Insight into Land Use Classification Based on Aggregated Mobile PhoneData[J]. <em>International Journal of Geographical Information Science</em>, 2014, 28(9):1988-2007
[22]  Jendryke M, Balz T, McClure S C, et al. Putting People in the Picture:Combining Big Location-based Social Media Data and Remote Sensing Imagery for Enhanced Contextual Urban Information in Shanghai[J]. <em>Computers, Environment and Urban Systems</em>, 2017, 62:99-112
[23]  Liu X, He J, Yao Y, et al. Classifying Urban Land Use by Integrating Remote Sensing and Social Media Data[J].<em>International Journal of Geographical Information Science</em>, 2017, 31(8):1675-1696
[24]  Liu L, Zhou B, Zhao J, et al. C-IMAGE:City Cognitive Mapping through Geo-tagged Photos[J].<em>GeoJournal</em>, 2016, 81:817-861
[25]  Liu X, Gong L, Gong Y, et al. Revealing Travel Patterns and City Structure with Taxi Trip Data[J]. <em>Journal of Transport Geography</em>, 2015, 43:78-90
[26]  Zhao Z, Shaw S L, Xu Y, et al. Understanding the Bias of Call Detail Records in Human Mobility Research[J]. <em>International Journal of Geographical Information Science</em>, 2016, 30(9):1738-1762
[27]  Grinnell J. Presence and Absence of Animals[M]. Berkeley:University of California Chronicle Press, 1928
[28]  Li X, Zhang C, Li W. Building Block Level Urban Land-use Information Retrieval Based on Google Street View Images[J]. <em>GIScience& Remote Sensing</em>, 2017, 54(6):819-835
[29]  Liu X, Kang C, Gong L, et al. Incorporating Spatial Interaction Patterns in Classifying and Understanding Urban Land Use[J]. <em>International Journal of Geographical Information Science</em>, 2016, 30(2):334-350
[30]  Yang W, Mu L. GIS Analysis of Depression among Twitter Users[J]. <em>Applied Geography</em>, 2015, 60:217-223

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133