全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于P-N学习的高分遥感影像道路半自动提取方法
Semi-automatic Road Extraction Method from High Resolution Remote Sensing Images Based on P-N Learning

DOI: 10.13203/j.whugis20140999

Keywords: 高分辨率,道路提取,模板匹配,P-N学习,
high resolution
,road extraction,template matching,P-N learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于模板匹配的道路跟踪是半自动提取道路的主要方法。然而场景中地物干扰和道路宽度的变化降低了模板匹配的稳定性;另外,道路跟踪失败后缺乏重检测机制,使得道路提取过程中人机交互频繁。针对以上问题,提出了一种基于P-N(positive-negative)学习的高分遥感影像道路半自动提取方法。该方法由道路跟踪、检测和学习构成,关键是采用了P-N学习的策略迭代的训练分类器,通过纠正违反结构约束的样本分类结果来提高分类器性能。实验使用了不同场景下的城区高分遥感影像,与经典的模板匹配和在线学习的道路跟踪方法进行了比较。实验结果表明该方法在道路提取的精度和稳定性方面均有提升

References

[1]  Movaghati S, Moghaddamjoo A, Tavakoli A. Road Extraction From Satellite Images Using Particle Filtering and Extended Kalman Filtering[J]. <em>IEEE Transactions on Geoscience and Remote Sensing,</em> 2010, 48(7): 2 807-2 817
[2]  Zhang J, Lin X, Liu Z, et al. Semi-automatic Road Tracking by Template Matching and Distance Transformation in Urban Areas[J]. <em>International Journal of Remote Sensing,</em> 2011, 32(23): 8 331-8 347
[3]  Yu Jie, Yu Feng, Zhang Jing, et al. High Resolution Remote Sensing Image Road Extraction Combining Region Growing and Road-Unit[J]. <em>Geomatics and Information Science of Wuhan University, </em>2013, 38(7): 761-764(余洁,余峰,张晶,等.结合区域生长与道路基元的高分辨率遥感影像道路提取[J]. 武汉大学学报·信息科学版, 2013, 38(7): 761-764)
[4]  Vosselman G, De Knecht J. Road Tracing by Profile Matching and Kalman Filtering[M]//Automatic Extraction of Man-Made Objects from Aerial and Space Images, Birkh?user: Springer, 1995
[5]  Achanta R, Shaji A, Smith K, et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J].<em> IEEE Transactions on Pattern Analysis and Machine Intelligence,</em> 2012, 34(11): 2 274-2 282
[6]  Wiedemann C, Heipke C, Mayer H, et al. Automatic Extraction and Evaluation of Road Networks from MOMS-2P Imagery[J]. <em>International Archives of Photogrammetry and Remote Sensing,1998,32(1):285-291</em>
[7]  Lin Xiangguo,Zhang Jixian,Li Haitao, et al. Semi-automatic Extraction of Ribbon Road from High Resolution Remotely Sensed Imagery by a T-Shaped Template Matching[J]. <em>Geomatics and Information Science of Wuhan University, </em>2009, 34(3): 293-296(林祥国,张继贤,李海涛,等.基于T型模板匹配半自动提取高分辨率遥感影像带状道路[J]. 武汉大学学报·信息科学版, 2009, 34(3): 293-296)
[8]  Hu X, Zhang Z, Tao C V. A Robust Method for Semi-automatic Extraction of Road Centerlines Using a Piecewise Parabolic Model and Least Square Template Matching[J]. <em>Photogrammetric Engineering & Remote Sensing,</em> 2004, 70(12): 1 393-1 398
[9]  Fu Gang,Zhao Hongrui, Li Cong, et al. A Method by Improved Circular Projection Matching of Tracking Twisty Road from Remote Sensing Imagery[J]. <em>Acta Geodaetica et Cartographica Sinica, </em>2014, 43(7): 724-730, 738(傅罡,赵红蕊,李聪,等.曲折道路遥感影像圆投影匹配改进追踪法[J].测绘学报, 2014, 43(7): 724-730, 738)
[10]  Breiman L. Random Forests[J]. <em>Machine Learning, </em>2001, 45(1): 5-32
[11]  Miao Z, Wang B, Shi W, et al. A Semi-automatic Method for Road Centerline Extraction from VHR Images[J]. <em>IEEE Geoscience and Remote Sensing Letters,</em> 2014, 11: 1 856-1 860
[12]  Meng Fan, Fang Shenghui. Quasi-automatic Extraction of Zonal Roads from Remote Sensing Images Using Template Matching and BSnake Model[J].<em> Geomatics and Information Science of Wuhan University,</em> 2012, 37(1): 39-42(孟樊,方圣辉.利用模板匹配和BSnake算法准自动提取遥感影像面状道路[J]. 武汉大学学报·信息科学版, 2012, 37(1): 39-42)
[13]  Zhou J, Cheng L, Bischof W F. Online Learning With Novelty Detection in Human-Guided Road Tracking[J]. <em>IEEE Transactions on Geoscience and Remote Sensing,</em> 2007, 45(12): 3 967-3 977

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133