|
- 2017
一种基于观测方程GDOP值的优化选站模型
|
Abstract:
针对GNSS(global navigation satellite system)数据分析中心对快速、超快速轨道产品精度及时效性的要求以及全球跟踪站分布不均匀性的现状,本文提出一种基于观测方程GDOP(geometric dilution of precision)值的优化选站SSS(selected step by step)模型。从理论上推导出精密定轨最小地面跟踪站数与地面最优跟踪站数的计算方法,分别通过s°×s°和k°×k°带全球网格划分,筛选最小跟踪站全球分布,以定轨观测方程GDOP值最小为准则,逐步累加筛选定轨全球跟踪站最优分布。连续6 d的数据分析结果表明,本文提出的优化选站模型,在相同数据处理能力条件下,定轨精度可达整体处理的90%,处理时间缩短50%以上;与一般策略对比表明,SSS模型计算出的轨道精度相当,时间节约20%左右;此模型所选跟踪站为最优或次优,提高了分析中心数据处理效率
[1] | Zhang L, Dang Y, Xue S, et al. The Optimal Distribution Strategy of BeiDou Monitoring Stations for GEO Precise Orbit Determination[C]. The 6th China Satellite Navigation Conference, Xi'an, China, 2015 |
[2] | Dvorkin V V, Karutin S N. Optimization of the Global Network of Tracking Stations to Provide GLONASS Users with Precision Navigation and Timing Service[J].<em>Gyroscopy & Navigation</em>, 2013, 4(4):181-187 |
[3] | Liu Jingbin, Wu Xiujuan, Cai Yanhui, et al. Simulation System of Ground Station for Galileo[C]. The Seventh Annual Meeting China Global Positioning System Technology Application Association, Shenzhen, China,2003(柳景斌,吴秀娟,蔡艳辉,等. 伽利略系统地面布站仿真系统[C].中国全球定位系统技术应用协会第七次年会,深圳,中国,2003) |
[4] | Chen J, Wu B, Hu X, et al. SHA: The GNSS Analysis Center at SHAO[C]. The 2th China Satellite Navigation Conference, Shanghai, China, 2011 |
[5] | D'Amario L A, Bright L E, Wolf A A. Galileo Trajectory Design[J]. <em>Space Science Reviews</em>, 1992, 60(1):23-78 |
[6] | Wang Q, Dang Y, Xu T. The Method of Earth Rotation Parameter Determination Using GNSS Observations and Precision Analysis[C]. The 4th China Satellite Navigation Conference,Wuhan, China, 2013 |
[7] | Cannon M E, Schwarz K P, Wei M, et al. A Consistency Test of Airborne GPS Using Multiple Monitor Stations[J]. <em>Journal of Geodesy</em>, 1992, 66(1):2-11 |
[8] | Chen J, Zhang Y, Xie Y, et al. Improving Efficiency of Data Analysis for Huge GNSS Network[C]. The 4th China Satellite Navigation Conference,Wuhan, China, 2013 |
[9] | Xue Shuqiang, Yang Yuanxi. Nested Cones for Single-Point-Positioning Configuration with Minimal GDOP[J].<em>Geomatics and Information Science of Wuhan University,</em>2014, 39(11): 1 369-1 374(薛树强, 杨元喜. 最小GDOP定位构型的一种嵌套圆锥结构[J]. 武汉大学学报·信息科学版, 2014, 39(11):1 369-1 374) |
[10] | Liu Wei. The Research on The Effect of GroundObservation Stations Distribution on the Precisionof Orbit Determination[D]. Wuhan: Wuhan University, 2005(刘伟. 监测站的分布对定轨精度影响的研究[D]. 武汉:武汉大学, 2005) |
[11] | Xue Shuqiang, Yang Yuanxi, Chen Wu, et al. Positioning Configurations with Minimum GDOP from Orthogonal Trigonometric Functions[J].<em>Geomatics and Information Science of Wuhan University</em>, 2014, (7): 820-825 (薛树强, 杨元喜, 陈武, 等. 正交三角函数导出的最小GDOP定位构型解集[J]. 武汉大学学报·信息科学版, 2014, (7): 820-825) |
[12] | Wang Jiexian. GPS Precise Orbit and Efficiency of Data Analysis for Huge GNSS Positioning[M]. Shanghai: Tongji University Press,1997(王解先. GPS精密定轨定位[M]. 上海:同济大学出版社, 1997) |
[13] | Wen Yuanlan, Liu Qixu, Zhu Jun, et al. The Effect of TT&C Deployment on the Regional Satellite Navigation System[J].<em>Journal of National University of Defense Technology,</em>2007, 29(1):1-6(文援兰, 柳其许, 朱俊, 等. 测控站布局对区域卫星导航系统的影响[J]. 国防科技大学学报, 2007, 29(1):1-6) |
[14] | Ge M, Gendt G, Dick G, et al. A New Data Processing Strategy for Huge GNSS Global Networks[J].<em>Journal of Geodesy</em>, 2006, 80(4): 199-203 |