全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一种基于统计学习理论的最小生成树图像分割准则
A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree

DOI: 10.13203/j.whugis20150345

Keywords: 统计学习,最小生成树,图像分割准则,
statistical learning
,minimum spanning tree (MST),image segmentation rule

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据基于区域增长的面向对象图像分割的本质特点,将统计学习理论与最小生成树算法相结合,提出了一种基于统计学习理论的最小生成树图像分割准则。将该图像分割准则应用于多种遥感影像数据进行分割实验,其结果表明基于统计学习理论的最小生成树图像分割准则能通过简便的参数设置,即可以较好地实现不同尺度目标的图像分割,同时又能对纹理区域进行有效分割,能获得良好的区域边界和较好的抗噪声性能,并在海岸带大比例尺无人机正射影像的图像分割实践中得到了较好验证

References

[1]  Boykov Y Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images[C]. International Conference on Computer Vision, Vancouver, Canada, 2001
[2]  Falc?o A X, Udupa J K, Samarasekera S, et al. User-Steered Image Segmentation Paradigms:Live Wire and Live Lane[J]. Graphical Models and Image Processing, 1998, 60(4):233-260
[3]  Felzenszwalb P F, Huttenlocher D P. Efficient Graph-Based Image Segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181
[4]  Xu Y, Uberbacher E C. 2D Image Segmentation Using Minimum Spanning Trees[J]. Image and Vision Computing, 1997, 15(1):47-57
[5]  Bousquet O, Elisseeff A. Algorithmic Stability and Generalization Performance[J]. Advances in Neural Information Processing Systems, 2001,13:499-526
[6]  Bousquet O, Elisseeff A. Stability and Generalization[J]. Journal of Machine Learning Research, 2002, 2:499-526
[7]  Grady L, Schwartz E L. Isoperimetric Graph Partitioning for Image Segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(3):469-475
[8]  Habib M, McDiarmid C, Ramirez-Alfonsin J, et al. Concentration in Probabilistic Methods for Algorithmic Discrete Mathematics[M].NY:Spring, 1998:195-248
[9]  Mortensen E N, Barrett W A. Interactive Segmentation with Intelligent Scissors[J]. Graphical Models and Image Processing, 1998, 60(5):349-384
[10]  Shi J, Malik J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2000, 22(8):888-905
[11]  Wei Y C, Cheng C K. Ratio Cut Partitioning for Hierarchical Designs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1991, 10(7):911-921
[12]  Xu N, Bansal R, Ahuja N. Object Segmentation Using Graph Cuts Based Active Contours[J]. IEEE Computer Vision and Pattern Recognition, 2003, 2:46-53
[13]  Boykov Y, Kolmogorov V. An Experimental Comparison of Min-cut/max-flow Algorithms for Energy Minimization in Vision[J]. IEEE Transactions on PAMI, 2004, 26(9):1124-1137
[14]  Cour T, Benezit F, Shi J. Spectral Segmentation with Multiscale Graph Decomposition[J]. IEEE Computer Vision and Pattern Recognition, 2005, 2:1124-1131
[15]  Hickson S, Birchfield S, Essa I, et al. Efficient Hierarchical Graph-based Segmentation of RGBD Videos[J].Computer Vision and Pattern Recognition (CVPR), 2014,12(4):344-351
[16]  Kropatsch W G, Haxhimusa Y, Ion A. Multiresolution Image Segmentations in Graph Pyramids[J]. Studies in Computational Intelligence(SCI), 2007, 52:3-41
[17]  Santle C K, Govindan V K. A Review on Graph Based Segmentation[J]. International Journal of Image, Graphics and Signal Processing (IJIGSP), 2012, 4(5):1-13
[18]  Zheng Chen, Wang Leiguang, Hu Yijun, et al. Texture Segmentation Based on Multiscale Fuzzy Markov Random Field Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2010,35(9):1074-1078(郑晨,王雷光,胡亦钧,等. 利用小波域多尺度模糊MRF模型进行纹理分割[J]. 武汉大学学报·信息科学版,2010,35(9):1074-1078)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133