|
- 2018
一种狭长图斑分块融解方法
|
Abstract:
融解是图斑综合过程中的一种常见操作,涉及大量计算。面对传统方法受机器计算能力所限,难以对大范围海量图斑进行处理的问题,引入分块策略开展图斑融解,并就块与块之间边界处狭长图斑分裂线拓扑变化问题,提出了一种狭长图斑分块融解方法。首先归纳了狭长图斑分块时在格网边界处出现的4种拓扑变化模式,并针对每种模式提出了相应的分裂线拓扑变化恢复方法;然后利用中国贵州省赤水市地理国情普查实际数据进行了验证。试验结果表明,该方法不仅可以处理海量图斑数据,可以极大地提高融解效率,而且融解结果与整体处理结果保持高度一致,具有良好的可行性
[1] | Penninga F, Verbree E, Quak W, et al. Construction of the Planar Partition Postal Code Map Based on Cadastral Registration[J]. GeoInformatica, 2005, 9(2):181-204 |
[2] | Ai Tinghua, Yang Fan, Li Jingzhong. Land-use Data Generalization for the Database Construction of the Second Land Resource Survey[J]. Geomatics and Information Science of Wuhan University,2010,35(8):887-891(艾廷华, 杨帆, 李精忠. 第二次土地资源调查数据建库中的土地利用图综合缩编[J]. 武汉大学学报·信息科学版, 2010,35(8):887-891) |
[3] | Cloppet F, Oliva J M, Stamon G. Angular Bisector Network, a Simplified Generalized Voronoi Diagram:Application to Processing Complex Intersections in Biomedical Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1):120-128 |
[4] | Ai Tinghua, Guo Renzhong. A Constrained Delaunay Partitioning of Areal Objects to Support Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2000, 25(1):35-41(艾廷华, 郭仁忠. 支持地图综合的面状目标约束Delaunay三角网剖分[J]. 武汉大学学报·信息科学版, 2000, 25(1):35-41) |
[5] | Jones C B, Bundy G L, Ware M J. Map Generalization with a Triangulated Data Structure[J]. Cartography and Geographic Information Systems, 1995, 22(4):317-331 |
[6] | Uitermark H, Vogels A, van Oosterom P. Semantic and Geometric Aspects of Integrating Road Networks[M]. Berlin, Heidelberg:Springer, 1999 |
[7] | Touya G, Berli J, Lokhat I, et al. Experiments to Distribute and Parallelize Map Generalization Processes[J]. The Cartographic Journal, 2017, 54(4):322-332 |
[8] | Aichholzer O, Aurenhammer F, Alberts D, et al. A Novel Type of Skeleton for Polygons[M]. Berlin, Heidelberg:Springer, 1996 |
[9] | Haunert J H, Sester M. Area Collapse and Road Centerlines Based on Straight Skeletons[J]. GeoInformatica, 2008, 12(2):169-191 |
[10] | Lee D T. Medial Axis Transformation of a Planar Shape[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4(4):363-369 |
[11] | Ruas A. Multiple Paradigms for Automating Map Generalization:Geometry, Topology, Hierarchical Partitioning and Local Triangulation[C]. ACSM/ASPRS Annual Convention and Exposition, Charlotte, USA, 1995 |
[12] | Ware J M, Jones C B, Bundy G L. A Triangulated Spatial Model for Cartographic Generalization of Areal Objects[C]//Kraak M J, Molenaar M. Advance in GIS Research Ⅱ (the 7th Int Symposium on Spatial Data Handling). London:Taylor & Francis, 1997a:173-192 |
[13] | Delucia A A, Black R T. A Comprehensice Approach to Automatic Feature Generalization[C].The 13th International Cartographic Conference, Morelia,Mexico,1987 |
[14] | Ai Tinghua, Liu Yaolin. Aggregation and Amalgamation in Land-use Data Generalization[J].Geoma-tics and Information Science of Wuhan University, 2002, 27(5):486-492(艾廷华, 刘耀林. 土地利用数据综合中的聚合与融合[J]. 武汉大学学报·信息科学版, 2002, 27(5):486-492) |
[15] | Touya G. Relevant Space Partitioning for Collaborative Generalization[C]. The 13th Workshop of the ICA Commission on Generalisation and Multiple Representation, Zürich, Switzertand,2010 |
[16] | Thiemann F, Werder S, Globig T, et al. Investigations into Partitioning of Generalization Processes in a Distributed Processing Framework[C].The 26th International Cartographic Conference,Dresden, Germany,2013 |