|
- 2018
宽视场遥感相机像移速度模型及补偿策略
|
Abstract:
宽视场遥感相机在轨成像期间,受地球自转、卫星颤振、姿态机动等因素影响而产生像移,导致成像质量降低。为此,提出了一种适用于宽视场遥感相机的像移速度模型,并考虑了离轴角对计算精度的影响,推导了离轴三反相机像移速度和偏流角解析式。以某卫星为例,仿真分析了3种典型成像模式下像移速度和偏流角在焦面的分布情况,仿真结果与定性分析结果一致,验证了像移速度模型的正确性。在此基础上,针对侧摆兼具俯仰成像模式,提出了相应的像移补偿策略。补偿效果表明,卫星侧摆35°兼具俯仰35°成像时,采用全局优化偏流角匹配策略能保证整个焦面区域的调制传递函数(modulation transfer function,MTF)均大于0.95(16级);采用局部优化偏流角匹配策略能保证焦面重点观测目标的MTF大于0.95(96级);采用提出的像移速度匹配策略在分11组调节行周期情况下,能保证整个焦面区域的MTF均大于0.95(16级)。仿真结果表明,提出的像移补偿策略能有效解决侧摆兼具俯仰成像时的像质下降问题,可为宽视场遥感相机像移补偿提供可靠依据
[1] | Liu Lei, Ma Jun, Zheng Yuquan. Defocus Range of Off-Axis Three-Mirror Anastigmat (TMA) Camera Under Space Microgravity[J].Chinese Optics,2014, 7(2):320-325(刘磊,马军,郑玉权.空间微重力下离轴三反相机离焦范围[J].中国光学, 2014, 7(2):320-325) |
[2] | Le V N, Chen S, Fan Z. Optimized Asymmetrical Tangent Phase Mask to Obtain Defocus Invariant Modulation Transferfunction in Incoherent Imaging Systems[J]. Opt Lett, 2014, 39(7):271-274 |
[3] | Ning Yonghui, Guo Yongfei. Real-Time Image Processing in TDI CCD Space Mosaic Camera[J]. Opt Precision Eng, 2014, 22(2):508-516(宁永慧,郭永飞. 星上时间延迟积分CCD拼接相机图像的实时处理[J].光学精密工程,2014, 22(2):508-516) |
[4] | Zhang Jian, Zhang Linghua, Liu Liguo, et al. Necessity and Implement Method of Precise Assembling of TDI CCD in Sweep Aerial Remote Sensor[J]. Chinese Optics, 2014, 7(6):996-1001(张健,张玲花,刘立国,等.全景式航空遥感器TDI CCD精密装调必要性分析及实现方法[J].中国光学,2014, 7(6):996-1001) |
[5] | Yan Li, Jiang Yun, Wang Jun. Building of Rigorous Geometric Processing Model Based on Line-of-sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1451-1455(闫利,姜芸,王军. 利用视线向量的资源三号卫星影像严格几何处理模型[J]. 武汉大学学报·信息科学版,2013, 38(12):1451-1455) |
[6] | He Xiaojun, Qu Hongsong, Zhang Guixiang, et al. Impact of Scan Mirror Stability on TDI CCD System Measure Accuracy[J]. Chinese Optics, 2014, 7(4):665-671(贺小军,曲宏松,张贵祥,等.扫描镜稳定度对TDI CCD测量精度的影响[J].中国光学, 2014, 7(4):665-671) |
[7] | Tang Xinming, Zhou Ping, Zhang Guo, et al. Research on a Production Method of Sensor Corrected Products for ZY-3 Satellite[J]. Geomatics and Information Science of Wuhan University, 2014,39(3):287-299(唐新明,周平,张过,等.资源三号测绘卫星传感器校正产品生产方法研究[J]. 武汉大学学报·信息科学版,2014,39(3):287-299) |
[8] | Li Jin, Xing Fei, Wang Chong. High-Precision On-Orbit Assessment of MTF for Space CCD Camera[J]. Acta Optica Sinica, 2015, 35(2):0211003(李进,邢飞,王翀. 空间CCD相机高精度在轨调制传递函数估算[J].光学学报,2015, 35(2):0211003) |
[9] | Hao C L, Chen S Q, Zhang W. Comprehensive Analysis of Imaging Quality Degradation of an Airborne Optical System for Aerodynamic Flow Field Around the Optical Window[J]. Appl Opt, 2013, 52(33):7889-7898 |
[10] | Lv Hengyi, Xue Xucheng, Zhao Yunlong, et al. Measurement and Experiment of Modulation Transfer Function at Nyquist Frequency for Space Optical Cameras[J]. Opt Precision Eng, 2015, 23(5):1484-1489(吕恒毅,薛旭成,赵运龙,等. 空间光学相机在乃奎斯特频率处的调制传递函数测试与实验[J].光学精密工程,2015, 23(5):1484-1489) |
[11] | Wang Guoliang, Liu Jinguo, Long Kehui, et al. Influence of Image Motion on Image Quality of Off-Axis TMA Aerospace Mapping Camera[J]. Opt Precision Eng, 2014,22(3):806-813(王国良,刘金国,龙科慧,等.离轴三反航天测绘相机像移对成像质量的影响[J]. 光学精密工程, 2014,22(3):806-813) |
[12] | Zhao Jiaxin, Zhang Tao, Yang Yongming, et al. Image Motion Velocity Field of TDI-CCD Aerial Panoramic Camera[J]. Acta Optica Sinica, 2014, 34(7):0728003(赵嘉鑫,张涛,杨永明,等. TDI-CCD全景航空相机的像移速度场计算模型研究[J]. 光学学报, 2014, 34(7):0728003) |
[13] | Hu Yan, Jin Guang, Chang Lin, et al. Image Motion Matching Calculation and Imaging Validation of TDI CCD Camera on Elliptical Orbit[J]. Opt Precision Eng, 2014, 22(8):2274-2284(胡燕,金光,常琳,等. 椭圆轨道TDI CCD相机像移匹配计算与成像验证[J]. 光学精密工程, 2014, 22(8):2274-2284) |
[14] | Liu Haiqiu, Yan Dejie, Wang Dong, et al. Space Camera Image Motion Model Analysis Caused by Spacecraft Vibration[J]. Acta Optica Sinica, 2014, 34(6):0612001(刘海秋,闫得杰,王栋,等. 飞船振动引起的空间相机像移模型分析[J].光学学报,2014, 34(6):0612001) |
[15] | Wang Jiaqi, Yu Ping, Yan Changxiang, et al. Space Optical Remote Sensor Image Motion Velocity Vector Computational Modeling[J]. Acta Optica Sinica, 2004, 24(12):1585-1589(王家骐,于平,颜昌翔,等. 航天光学遥感器像移速度矢计算数学模型[J].光学学报, 2004, 24(12):1585-1589) |
[16] | Wu Xingxing, Liu Jinguo. Image Motion Compensation of Scroll Imaging for Space Camera Based on Earth Ellipsoid[J]. Opt Precision Eng,2014,22(2):351-359(武星星,刘金国. 基于地球椭球的空间相机侧摆摄影像移补偿[J].光学精密工程,2014,22(2):351-359) |
[17] | Wang Chong, You Zheng, Xing Fei, et al. Image Motion Velocity for Wide View Remote Sensing Camera and Detectors Exposure Integration Control[J]. Acta Optic Sinica,2013,33(5):0511002(王翀,尤政,邢飞,等.大视场空间遥感相机的像速场及图像传感器曝光积分控制[J].光学学报, 2013,33(5):0511002) |
[18] | Yue Qingxing, Tang Xinming, Gao Xiaoming. Imaging Simulation of Sub-meter Satellite TDI CCD Camera for Surveying and Mapping[J]. Geomatics and Information Science of Wuhan University, 2015,40(3):327-332(岳庆兴,唐新明,高小明. 亚m级卫星TDI CCD立体测绘相机成像仿真[J]. 武汉大学学报·信息科学版, 2015,40(3):327-332) |
[19] | Le Guoqing, Guo Yongfei, Liu Chunxiang, et al. Micro-vibration Detection of Remote Sensing Ca-mera Under Low Exposure Condition[J]. Chinese Optics, 2014, 7(6):917-924(乐国庆,郭永飞,刘春香,等. 低曝光条件下遥感相机微振动量检测[J].中国光学,2014, 7(6):917-924) |
[20] | Ghosh S K. Image Motion Compensation Through Augmented Collinearity Equations[J].Optical Engineering, 1985, 24(6):241014 |
[21] | Li Gang, Yang Mingyu. Image Motion Measurement for Airborne Camera Based on Joint Transform Correlation[J]. Chinese Optics, 2015, 8(3):401-406(李刚,杨名宇. 基于联合变换相关的机载航空相机像移测量[J]. 中国光学, 2015, 8(3):401-406) |