全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

公共地图服务中访问热点区域的时空规律挖掘
Temporal and Spatial Characteristics of Hotspots in Public Map Service

DOI: 10.13203/j.whugis20160424

Keywords: 公共地图服务,分组统计分析,时间序列统计分析,三维可视化,时空规律,
public map service
,group statistical analysis,time series statistical analysis,three-dimensional visualization,temporal and spatial characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

公共地图服务的普及是人们步入数字生活、建设智慧城市的重要一步。如何准确地探测群体用户访问行为的时空聚集访问模式,将网络虚拟空间访问行为映射为现实世界行为,是提升公共地图服务和推动智慧城市建设的关键所在。探寻了群体用户访问公共地图服务产生的热点聚集区域的时间及空间规律,基于海量用户访问日志记录,结合分组分析、时间序列统计分析和时空三维图可视化方法,挖掘得出公共地图服务热点区域具有明显的以星期为单位的周期自相似特征,多数热点区域在周期内连续出现;基于箱形图和频率密度图的统计方法,分析得到热点区域间距在空间上呈“小间距多,大间距少”的聚集分布形态,且在不同的图层中热点区域间距分布迥异。公共地图服务用户访问时空规律揭示了用户行为意图,可将人类活动数字化,促进智慧城市建设中人地关系的发展

References

[1]  Talagala N, Asami S, Patterson D, et al. The Art of Massive Storage:A Web Image Archive[J]. <em>Computer</em>, 2000, 33(11):22-28
[2]  Li R, Fan J, Jiang J, et al. Spatiotemporal Correlation in WebGIS Group-User Intensive Access Patterns[J]. <em>International Journal of Geographical Information Science</em>, 2017, 31(1):36-55
[3]  Wang W, Wang C, Zhu Y, et al.GraphMiner:A Structural Pattern-Mining System for Large Disk-Based Graph Databases and Its Applications[C]. ACM SIGMOD International Conference on Ma-nagement of Data, Baltimore, Maryland, USA, 2005
[4]  Zukerman I, Albrecht D W, Nicholson A E. Predicting Users' Requests on the WWW[R]. CISM International Centre for Mechanical Sciences, Vienna, Austria, 1999
[5]  Li Q, Zheng Y,Xie X, et al. Mining User Similarity Based on Location History[C]. The 16th ACM SIGspatial International Conference on Advances in Geographic Information Systems, ACM-GIS, Irvine, California, USA, 2008
[6]  Li R, Feng W, Wu H, et al. A Replication Strategy for a Distributed High-Speed Caching System Based on Spatiotemporal Access Patterns of Geospatial Data[J]. <em>Computers Environment & Urban Systems</em>, 2014(1):163-171
[7]  Chen M S, Park J S, Yu P S. Efficient Data Mining for Path Traversal Patterns[J].<em>IEEE Transactions on Knowledge & Data Engineering</em>, 1998, 10(2):209-221
[8]  Pei J, Han J,Mortazavi-Asl B, et al. Mining Access Patterns Efficiently from Web Logs[M]//Terano T, Liu H, Chen A L P. Knowledge Discovery and Data Mining. Berlin, Heidelberg:Springer, 2000
[9]  Fan Mei. Research on the User Access Pattern Mining Model Based on Kohonen Neural Network[D]. Nanchang:Nanchang University, 2007(樊玫. 基于Kohonen神经网络的用户访问模式挖掘模型的研究[D]. 南昌:南昌大学, 2007)
[10]  Fisher D.Hotmap:Looking at Geographic Attention[J]. <em>IEEE Transactions on Visualization & Computer Graphics</em>, 2007, 13(6):1184-1191
[11]  Balamurugan V. Mining User Mobile Behavior in Location Based Services[J].<em>International Journal of Scientific and Research Publications</em>, 2012, 2(9):1-3
[12]  Tao Y H, Hong T P, Su Y M. Web Usage Mining with Intentional Browsing Data[J].<em>Expert Systems with Applications</em>, 2008, 34(3):1893-1904
[13]  Song Qingbao, Shen Junyi. Fuzzy Clustering Algorithms for Web Pages and Customer Segments[J]. <em>Mini-Micro System</em>, 2001, 22(2):229-231(宋擒豹, 沈钧毅. Web页面和客户群体的模糊聚类算法[J]. 小型微型计算机系统, 2001, 22(2):229-231)
[14]  Li R, Shen Y, Huang W, et al. Regional WebGIS User Access Patterns Based on a Weighted Bipartite Network[C]. ISPRS International Workshop on Spatiotemporal Computing,Fairfax,Virginia, USA, 2015
[15]  Li Zhongjie. Cartography Information on Internet[J]. <em>Cartography</em>, 1998(3):24-25(李仲杰. Internet上的地图与制图学信息[J]. 地图, 1998(3):24-25)
[16]  Cui Wenhong. The Application and Development Trends of Electronic Map[J]. <em>Geomatics & Spatial Information Technology</em>, 2008, 31(3):87-89(崔文红. 电子地图的应用及发展趋势[J]. 测绘与空间地理信息, 2008, 31(3):87-89)
[17]  Zaiane O R, Xin M, Han J. Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs[C]. IEEE Advances in Digital Libraries Conference, Washington D C, USA, 1998
[18]  Scime A, Kerschberg L. WebSifter:An Ontological Web-Mining Agent for E-Business[C]. IFIP TC2/WG2.6 Ninth Working Conference on Database Semantics, Hong Kong, China,2001
[19]  Xu Yong, Chen Enhong, Wang Xifa. Neural Network Based Web User Behavior Cluster Analysis[J]. <em>Mini-Micro System</em>, 2001, 22(6):699-702(徐涌, 陈恩红, 王煦法. 基于神经网络的Web用户行为聚类分析[J]. 小型微型计算机系统, 2001, 22(6):699-702)
[20]  Gery M, Haddad H. Evaluation of Web Usage Mi-ning Approaches for User's Next Request Prediction[C]. ACM CIKM International Workshop on Web Information & Data Management, New Orleans, USA, 2003
[21]  Wu Huayi, Li Rui, Zhou Zhen, et al. Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2015, 40(10):1279-1286(吴华意, 李锐, 周振, 等. 公共地图服务的群体用户访问行为时序特征模型及预测[J]. 武汉大学学报·信息科学版, 2015, 40(10):1279-1286)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133