全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用词袋模型检测建筑物顶面损毁区域
Detection of Damaged Areas Based on Visual Bag-of-Words Model from Aerial Remote Sensing Images

DOI: 10.13203/j.whugis20150665

Keywords: 建筑物顶面损毁检测,视觉词袋模型,超像素分割,简单线性迭代聚类(SLIC),SVM,
detection of damaged rooftop areas
,visual bag-of-words model,superpixel segmentation,SLIC,SVM

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对航空影像中已分割出的建筑物顶面,提出了一种利用视觉词袋模型检测建筑物顶面损毁区域的方法。该方法首先利用简单线性迭代聚类方法对建筑物顶面进行超像素分割,然后对超像素区域利用颜色和梯度方向直方图特征构建视觉词袋模型,最后使用支持向量机(support vector machine,SVM)对超像素区域中的损毁区域进行检测。实验结果表明,该方法能有效判定建筑物顶面损毁区域,对提高建筑物整体损毁检测精度具有重要意义

References

[1]  Jégou H, Douze M, Schmid C. Packing Bag-of-Features[C]. International Conference on Computer Vision, Kyoto, Japan, 2009
[2]  Shi Jianbo, Malik J. Normalized Cuts and Image Segmentation[J].<em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>,2000,22(8):888-905
[3]  Comaniciu D, Meer P. Mean Shift:A Robust Approach Toward Feature Analysis[J]. <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>,2002, 24(5):603-619
[4]  Levinshtein A,Stere A,Kutulakos K N,et al.Turbopixels:Fast Superpixels Using Geometric Flows[J].<em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>,2009,31(12):2290-2297
[5]  Li Manchun, Cheng Liang, Gong Jianya, et al. Post-earthquake Assessment of Building Damage Degree Using LIDAR data and Imagery[J]. <em>Science in China Series E:Technological Sciences</em>, 2008,52:133-143
[6]  Sui Haigang, Tu Jihui, Song Zhina, et al. A Novel 3D Building Damage Detection Method Using Multiple Overlapping UAV Images[C]. ISPRS Technical Commission VⅡ Symposium, Istanbul, Turkey,2014
[7]  Wang Chunyao, Chen Junzhou, Li Wei. Review on Superpixel Segmentation Algorithms[J].<em>Application Research of Computers</em>,2014,31(1):6-12(王春瑶, 陈俊周, 李炜. 超像素分割算法研究综述[J]. 计算机应用研究,2014,31(1):6-12)
[8]  Achanta R,Shaji A,Smith K,et al.SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J]. <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>,2012,34(11):2274-2282
[9]  Vincent L, Soille P. Watersheds in Digital Spaces:an Efficient Algorithm Based on Immersion Simulations[J].<em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>,1991,13(6):583-598
[10]  Bay H, Tuytelaars T, Gool L V. Surf:Speeded Up Robust Features[C]. International Conference on Computer Vision, Marseille, France, 2008
[11]  Dong Laigen, Shan Jie. A Comprehensive Review of Earthquake-Induced Building Damage Detection with Remote Sensing Techniques[J]. <em>ISPRS Journal of Photogrammetry and Remote Sensing</em>, 2013,84:85-99
[12]  Vedaldi A, Soatto S. Quick Shift and Kernel Methods for Mode Seeking[C]. International Conference on Computer Vision, Marseille, France, 2008
[13]  Sivic J, Zisserman A. Video Google:A Text Retrieval Approach to Object Matching in Videos[C]. International Conference on Computer Vision, Nice, France, 2003
[14]  Liu C, Wechsler H.Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[C]. International Conference on Image Processing, Marseille, France, 2002
[15]  Li Deren, Liu Likun, Shao Zhenfeng. An Integration of Aerial Oblique Photogrammetry and Mobile Mapping System for Urban Geographical Conditions Monitoring[J].<em>Geomatics and Information Science of Wuhan University</em>, 2015,40(4):427-435(李德仁,刘立坤,邵振峰.集成倾斜航空摄影测量和地面移动测量技术的城市环境监测[J].武汉大学学报·信息科学版,2015,40(4):427-435)
[16]  Lodhi H, Saunders C, Shawe-Taylor J, et al. Text Classification Using String Kernels[J]. <em>The Journal of Machine Learning Research</em>, 2002, 41(2):419-444

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133