全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

重力梯度特征向量和多尺度分析法在密度异常深度探测中的应用
Application of Density Anomaly Depth Detection Using Gravity Gradient Eigenvectors and Multiscale Analysis Approach

DOI: 10.13203/j.whugis20140235

Keywords: 重力梯度,深度探测,特征向量,多尺度,
gravity gradient
,depth detection,eigenvector,multiscale

Full-Text   Cite this paper   Add to My Lib

Abstract:

相较于传统的重力测量手段,重力梯度测量能够以更高的灵敏度和分辨率反映出地下密度异常体的结构特征。随着科学技术的不断发展,航空及卫星重力梯度测量系统已经投入使用,并实现了大范围高精度的重力梯度测量。因此,现阶段的主要挑战在于对越来越多的重力梯度数据进行分析、处理和解释。本文根据重力梯度全张量主特征值对应的特征向量,对密度异常体的深度探测进行了研究。由于不同埋深的密度异常体具有不同的波长反映,利用多尺度分析法可以分解出不同频段重力梯度张量,从而增强对更大埋深密度异常体的探测分析能力。通过对模型和实测重力梯度数据的分析解算,结果表明,重力梯度的特征向量和多尺度分析法能够有效地确定密度异常体的深度信息,并且对干扰场源和随机噪声也具有一定的抗干扰能力

References

[1]  Beiki M.Analytic Signals of Gravity Gradient Tensor and Their Application to Estimate Source Location [J].<em>Geophysics,</em>2010,75(6):159-174
[2]  Ma Guoqing,Du Xiaojuan,Li Lili.Comparison of the Tensor Local Wavenumber Method With the Conventional Local Wavenumber Method for Interpretation of Total Tensor Data of Potential Fields[J].<em>Chinese J Geophys</em>, 2012,55(7): 2 450-2 461(马国庆,杜晓娟,李丽丽.解释位场全张量数据的张量局部波数法及其与常规局部波数法的比较[J].地球物理学报,2012,55(7): 2 450-2 461)
[3]  Fitz Gerald D J,Paterson R .Inversion of Gravity Gradiometry for a Basin Fault Network in an Oil Application in Brazil,Using 3D“Worming”[C]. The 13th International Congress of the Brazilian Geophysical Society,Brazil, 2013
[4]  Wedge D .Mass Anomaly Depth Estimation from Full Tensor Gradient Gravity Data[C].Applications of Computer Vision(WACV),IEEE Workshop on,Clearwater, Florida,2013
[5]  Wedge D,Sivarajah Y,Holden E J,et al.Mass Anomaly Visualisation and Depth Estimation from Full Tensor Gradient Gravity Data[J].<em>ASEG Extended Abstracts</em>,2013(1):1-5
[6]  Luo Zhicai, Zhou Boyang, Zhong Bo, et al. Outlier Detection of Satellite Gravity Gradiometry Data[J].<em>Geomatics and Information Science of Wuhan University</em>, 2012, 37(12): 1 392-1 396(罗志才,周波阳,钟波,等.卫星重力梯度测量数据的粗差探测[J].武汉大学学报·信息科学版,2012,37(12): 1 392-1 396)
[7]  Xu Tianhe,He Kaifei.Accuracy Evaluation Method of GOCE SGG Data Based on Satellite Crossovers[J].<em>Geomatics and Information Science of Wuhan University</em>,2011,36(5):617-620(徐天河,贺凯飞.利用交叉点不符值对GOCE卫星重力梯度数据进行精度评定[J].武汉大学学报·信息科学版,2011,36(5):617-620)
[8]  Pedersen L B, Rasmussen T M .The Gradient Tensor of Potential Field Anomalies:Some Implications on Data Collection and Data Processing of Maps[J].<em>Geophysics</em>,1990,55(12):1 558-1 566
[9]  Zuidweg K, Mumaw G R . Airborne Gravity Gradiometry For Exploration Geophysics——The First 5 Years[OL].http://www.hgk.msb.gov.tr/dergi/makaleler/OZEL18/ozel18_46.pdf,2014
[10]  Dransfield M H. Airborne Gravity Gradiometry in the Search for Mineral Deposits[J].<em>Exploration</em>,2007,7:341-354
[11]  Dransfield M H. Airborne Gravity Gradiometry [D]. Australia:University of Western Australia, 1994
[12]  Mikhailov V, Pajot G, Diament M, et al.Tensor Deconvolution:A Method to Locate Equivalent Sources from Full Tensor Gravity Data[J].<em>Geophysics</em>,2007, 72(5): 161-169
[13]  Mataragio J, Kieley J .Application of Full Tensor Gradient Invariants in Detection of Intrusion-Hosted Sulphide Mineralization:Implications for Deposition Mechanisms[J].<em>Mining Geoscience</em>,2009,27:95-98
[14]  Beiki M, Pedersen L B .Eigenvector Analysis of Gravity Gradient Tensor to Locate Geologic Bodies[J].<em>Geophysics,</em>2010,75(6):137-149
[15]  Qruc B .Depth Estimation of Simple Causative Sources from Gravity Gradient Tensor Invariants and Vertical Component[J].<em>Pure and Applied Geophysics,</em> 2010,167(10):1 259-1 272
[16]  Qruc B .Edge Detection and Depth Estimation Using a Tilt Angle Map from Gravity Gradient Data of the Kozakli-Central Anatolia Region,Turkey[J].<em>Pure and Applied Geophysics</em>,2011,168(10): 1 769-1 780
[17]  BellR E, Anderson R, Pratson L. Gravity Gradiometry Resurfaces[J].<em>The Leading Edge</em>,1997, 16(1):55-59
[18]  Zhang Changyou, Mushayandebvu M F, Reid A B,et al.Euler Deconvolution of Gravity Tensor Gradient Data[J].<em>Geophysics</em>,2000,65(2):512-520
[19]  Liu Lintao, Hsu Houze. Inversion and Normalization of Time-Frequency Transform[J].<em>Applied Mathematics & Information Sciences</em>,2012(6):67-74
[20]  Christensen A .Results from FALCON Airborne Gravity Gradiometer Surveys over the Kauring AGG Test Site[J].<em>ASEG Extended Abstracts</em>,2013(1):1-4
[21]  Martinez C, Li Y G.Understanding Gravity Gradiometry Processing and Interpretation Through the Kauring Test Site Data[J].<em>ASEG Extended Abstracts</em>,2012(1):1-4
[22]  Hofmann-Wellenhof B, Moritz H. Physical Geodesy[M]. New York: Springer Science & Business Media, 2006
[23]  Jiang Fuyu,Gao Likun,Huang Linyun.Study on Gravity Gradient Tensor of Oil-Gas Model[J].<em>Journal of Jilin University(Earth Science Edition),</em>2011,41(2):545-551(蒋甫玉,高丽坤,黄麟云.油气模型的重力梯度张量研究[J].吉林大学学报(地球科学版),2011,41(2):545-551)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133