全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

利用渐消自适应EKF算法进行PDR-WiFi融合定位
An Fusion Positioning for PDR and WiFi Based on Fading Adaptive Weighted EKF

DOI: 10.13203/j.whugis20140432

Keywords: 室内定位,行人航位推算,扩展卡尔曼滤波,WiFi,渐消因子,自适应加权,
indoor localization
,pedestrian dead reckoning,extended Kalman filter,WiFi,fading factor,adaptive weighted

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对基于指纹库的WiFi定位存在的点位重积、回跳,行人航位推算算法中误差积累的问题,提出了并实现了通过一种自适应加权扩展卡尔曼滤波对两种定位算法进行松耦合。首先给出了WiFi无线定位和行人航位推算进行位置解算的原理,采用渐消因子的自适应加权EKF算法实现了两者的融合,最后通过实测数据验证算法的有效性。试验表明,该方法在保持了WiFi定位单次定位高精度的特性的同时,继承了航位推算的连贯性,不仅减少了WiFi定位所存在的重复堆积点以及回跳点,并在一定程度上削弱了行人航位推算所存在的积累误差,提高了融合算法的效率,大大提高了室内定位的精度与稳定性

References

[1]  Wang Jian, Liu Chao, Gao Jingxiang, et al. GNSS/INS Tightly Coupled Navigation Model Based on Robust EKF[J].Geomatics and Information Science of Wuhan University, 2011, 36(5):596-600(王坚, 刘超, 高井祥, 等. 基于抗差EKF的GNSS/INS紧组合算法研究[J]. 武汉大学学报·信息科学版, 2011, 36(5):596-600)
[2]  Rai A, Chintalapudi K K, Padmanabhan V N, et al. Zee:Zero-Effort Crowdsourcing for Indoor Localization[C].Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, ACM, Istanbul, Turkey, 2012
[3]  Judd T, Levi R W. Dead Reckoning Navigational System Using Accelerometer to Measure Foot Impacts[P]. US Patent 5,583,776, USA, 1996-12-10
[4]  Li F, Zhao C, Ding G, et al. A Reliable and Accurate Indoor Localization Method Using Phone Inertial Sensors[C].Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Beijing, 2012
[5]  Weinberg H. Using the ADXL202 in Pedometer and Personal Navigation Applications[J]. Analog Devices AN-602 Application Note, 2002, 2:1-6
[6]  Kang W, Nam S, Han Y, et al. Improved Heading Estimation for Smartphone-based Indoor Positioning Systems[C].Personal Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium on IEEE, Sydney, Australia, 2012
[7]  Zhang Shizhe. Indoor Positioning System Design and Implementation Based on Inertial Sensor and WiFi[D]. Beijing:Beijing University of Posts and Telecommunications, 2012:23-42(张世哲. 基于惯性传感器和WiFi的室内定位系统的设计与实现[D]. 北京:北京邮电大学,2012:23-42)
[8]  Wang Jian, Hu A, Liu Chao, et al. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System[J]. Sensors, 2015, 15(4):7096-7124
[9]  Li Zengke, Wang Jian, Gao Jingxiang, et al. A Method to Prevent GPS/INS Integrated Navigation Filtering Divergence Based on SVM[J].Geomatics and Information Science of Wuhan University, 2013, 38(10):1217-1220(李增科, 王坚, 高井祥, 等. 利用SVM的GPS/INS组合导航滤波发散抑制方法研究[J]. 武汉大学学报·信息科学版, 2013, 38(10) 1217-1220)
[10]  Zhang Linwen, Wang Yunjia, Cao Xinyun. Enhanced Tile-Pyramid Model in Indoor Maps on Embedded Device[J]. Journal of Navigation and Positioning, 2014, 2(4):22-25(张俪文, 汪云甲, 曹新运. 嵌入式设备室内地图的瓦片金字塔优化[J]. 导航定位学报, 2014, 2(4):22-25)
[11]  Yang Qing. Research on Fingerprint-based Wireless Indoor Location Algorithm[D]. Hangzhou:Zhejiang University, 2011(杨清. 基于指纹的无线室内精确定位方法研究[D].杭州:浙江大学,2011)
[12]  Gao Weiguang, Yang Yuanxi, Cui Xianqiang, et al. Application of Adaptive Kalman Algorithm in IMU/GPS Integrated Navigation System[J].Geomatics and Information Science of Wuhan University, 2006, 31(5):466-469(高为广, 杨元喜, 崔先强, 等. IMU/GPS组合导航系统自适应Kalman滤波算法[J]. 武汉大学学报·信息科学版, 2006, 31(5):466-469)
[13]  Tian Hui, Xia Lingyuan, Mo Zhiming, et al. Signals of Opportunity Assisted Ubiquitous Positioning and Its Key Elements for Outdoor/Indoor Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11):1372-1376(田辉, 夏林元, 莫志明, 等. 泛在无线信号辅助的室内外无缝定位方法与关键技术[J]. 武汉大学学报·信息科学版, 2009, 34(11):1372-1376)
[14]  Youss E F, Agrawala M A, Shankar A, et al. A Probabilistic Clustering-based Indoor Location Determination System[R].Technical Reports of the Computer Science Department, USA, 2002
[15]  Beauregard S, Haas H. Pedestrian Dead Reckoning:A Basis for Personal Positioning[C]. Proceedings of the 3rd Workshop on Positioning, Navigation and Communication, Newark, NJ, USA, 2006
[16]  Yang Yuanxi, Gao Weiguang. Comparison of Two Fading Filters and Adaptively Robust Filter[J].Geomatics and Information Science of Wuhan University, 2006, 31(11):980-982(杨元喜, 高为广. 两种渐消滤波与自适应抗差滤波的综合比较分析[J]. 武汉大学学报·信息科学版, 2006, 31(11):980-982)
[17]  Nurminen H, Ristimaki A, Ali-Loytty S, et al. Particle Filter and Smoother for Indoor Localization[C].Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on IEEE, Montbéliard, 2013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133