|
- 2017
一种面向同名线要素的距离度量方法
|
Abstract:
针对已有距离度量方法在表达同名线要素空间位置差异准确性方面的不足,提出了一种面向同名线要素的距离度量方法。该方法结合Hausdorff距离和Fréchet距离的特点,首先分别将同名线要素上每个顶点在对应线上的对应点内插到对应线上,利用一阶差分的方法剔除其中的粗差点,并采用中位点进行了修正,然后依序计算每个点与对应线上点的最小欧氏距离,最后取其平均值作为最终的距离值。为了验证本方法的有效性,提出了衡量距离度量方法稳定性的平均振幅(F)和准确性的准确率(R)两个评价指标。通过与欧氏距离、Hausdorff距离和Fréchet距离实验结果的对比分析,表明本方法的距离度量结果比较符合人类的认知特点,具有一定的实用性
[1] | Zhai Renjian. Research on Automated Matching Methods for Multi-scale Vector Spatial Data Based on Global Consistency Evaluation[D]. Zhengzhou:Information Engineering University,2011(翟仁健.基于全局一致性评价的多尺度矢量空间数据匹配方法研究[D].郑州:信息工程大学,2011) |
[2] | Frank A U. Qualitative Spatial Reasoning About Distances and Directions in Geographic Space[J].<em>Journal of Visual Languages and Computing</em>, 1992, 3(4):343-371 |
[3] | Eiter T, Mannila H. Computing Discrete Fréchet Distance[R].Technical Report of Christian Doppler Labor für Expertensensyteme, Technical University of Vienna, Austria, 1994 |
[4] | Zhang M. Methods and Implementations of Road-network Matching[D]. Munich,Germany: Technical University of Munich, 2009 |
[5] | Yu X Z, Leung M. Shape Recognition Using Curve Segment Hausdorff Distance[C]. The 18th International Conference on Pattern Recognition, Hong Kong, 2006 |
[6] | Rucklidge W J. Efficient Visual Recognition Using the Hausdorff Distance[M]. Berlin: Springer, 1996 |
[7] | Briggs R. On the Relationship Between Cognitive and Objective Distance[M]. Stroudsburg:Dowden,Hutchinson and Ross,1973 |
[8] | Chen X Y,Doihara T,Nasu M. Spatial Relations of Distance Between Arbitrary Objects in 2D/3D Geographic Spaces Based on the Hausdorff Metric[C]. LIESMARS'95,Wuhan,China,1995 |
[9] | Wang Wencheng, Li Xiaowei, Zhi Jia, et al.Contour Matching Based on Hausdorff Distance[J]. <em>Journal of Xi'an University of Post and Telecommunications</em>, 2007,12(3):91-94(王文成,李晓伟,智佳,等.基于Hausdorff距离的轮廓线匹配[J]. 西安邮电学院学报,2007,12(3):91-94) |
[10] | Mascret A, Devogele T, Le Berre I, et al. Coastline Matching Process Based on the Discrete Fréchet Distance[C]. The 12th International Symposium on Spatial Data Handling (SDH), Vienna, Austria, 2006 |
[11] | Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing Images Using the Hausdorff Distance[J].<em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>, 1993, 15(9):850-862 |
[12] | Deng M, Li Z L, Chen X Y. Extended Hausdorff Distance for Spatial Objects in GIS[J]. <em>International Journal of Geographical Information Science</em>, 2007,21(4):459-475 |
[13] | Mustière S, Devogele T. Matching Networks with Different Levels of Detail[J].<em> Geoinformatica, </em>2008, 12(4):435-453 |
[14] | Volz S, Walter V. Linking Different Geospatial Databases by Explicit Relations[C]. The 20th ISPRS Congress, Istanbul, Turkey, 2004 |
[15] | Sun Tao, Zhang Hongjian. A Method of Outlier Detection and Correction Based on First Order Differential[J].<em>Chinese Journal of Scientific Instrument</em>, 2002,23(2):197-199(孙涛,张宏建.基于一阶差分的粗差剔除方法[J].仪器仪表学报,2002,23(2):197-199) |
[16] | Zhou Yuefeng, Yang Li, Yao Yannan. The Recognition and Correction Method for False Point in Data Acquisition[J].<em>Process Automation Instrumentation</em>, 1991,20(9):12-13(周跃峰,杨莉,姚燕南.数据采集中虚假点的识别与纠正方法[J].自动化仪表,1991,20(9):12-13) |
[17] | Guo Renzhong. Spatial Analysis[M]. Beijing: Higher Education Press, 2001(郭仁忠.空间分析[M].北京:高等教育出版社,2001) |