|
- 2017
时变重力测量确定青藏高原地壳隆升与增厚速率
|
Abstract:
联合绝对重力和重力反演与气候实验卫星(gravity recovery and climate experiment, GRACE)重力多年观测数据,获得了青藏高原多个基准站区域的地壳垂直形变速率。研究结果表明,绝对重力呈明显的负变化,绝对重力和卫星重力的时变系统差也呈较一致的负值,鼎新(DXIN)、德令哈(DLHA)、西宁(XNIN)、拉萨(LHAS)和仲巴(XZZB)5个基准站的区域地壳垂直形变呈明显的隆升状态,即拉萨块体、祁连块体和阿拉善块体处于地壳隆升状态,隆升速率分别约为2.01±0.15 mm/a、1.88±0.19mm/a、1.91±0.10 mm/a。在印度板块和欧亚板块的双向挤压下,青藏高原的地壳在不断的隆升与增厚,平均隆升速率约为1.94±0.17 mm/a,平均增厚速率约为2.35±3.30 mm/a
[1] | Zhang Shuangxi, Zhang Chen, Li Mengkui, et al. Impact of Tibetan Plateau Deformation on China's Western Borders[J]. <em>Geomaticas and Information Science of Wuhan University</em>,2012,37(10):1145-1149(张双喜,张晨,李孟奎,等. 青藏高原形变对中国西部边界的影响[J]. 武汉大学学报·信息科学版,2012,37(10):1145-1149) |
[2] | Liang S M, Gan W J, Shen C Z, et al. Three-Dimentsional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. <em>J Geophys Res</em>, 2013,118:5722-5732 |
[3] | Xing Lelin, Sun Wenke, Li Hui, et al. Present-Day Crust Thickness Increasing Beneath the Qinghai-Tibetan Plateau by Using Geodetic Data at Lhasa Station[J]. <em>Acta Geodaetica et Cartographica Sinca</em>,2011,40(1):41-44(邢乐林,孙文科,李辉, 等.用拉萨点大地测量资料检测青藏高原地壳的增厚[J]. 测绘学报,2011,40(1):41-44) |
[4] | Steffen H, Gitlein O, Denker H, et al. Present Rate of Uplift in Fennosscandia from GRACE and Absolute Gravimetry[J]. <em>Tetonophysisc</em>, 2009, 474:69-77 |
[5] | Muller J, Naeimi M, Gitlein O, et al. A Land Uplift Model in Fennoscania Combining GRACE and Absolute Graviemtry Data[J]. <em>Physics and Chemistry of the Earth</em>,2010, DOI:10.1016/j.pce.2010.12.006 |
[6] | Dill R, Dobslaw H. Numerical Simulations of Global-Scale High-Resolution Hydrological Crustal Deformations[J]. <em>J Geophys Res</em>,2013,118:5008-5017 |
[7] | Xing Lelin, Li Hui, Xuan Songbo, et al. Long-Term Gravity Changes in Chinese Mainland from GRACE and Terrestrial Gravity Measurements[J]. <em>Chinese J Geophys</em>, 2012,55(5):1557-1564(邢乐林,李辉,玄松柏,等. GRACE和地面重力测量监测到的中国大陆长期重力变化[J]. 地球物理学报, 2012, 55(5):1557-1576) |
[8] | Zhang G Q, Yao T D, Xie H J, et al. Increased Mass over the Tibetan Plateau:From Lakes or Glacier?[J]. <em>Greophys Res Lett</em>, 2013,40:2125-2130 |
[9] | Jiang Weiping, Zhou Xiaohui, Liu Jingnan, et al. Present-Day Crustal Movement and Strain Rate in the Qinghai-Tibetan Plateau from GPS Data[J]. <em>Acta Geodaetica et Cartographica Sinca</em>,2008,37(3):285-291(姜卫平,周晓慧,刘经南, 等. 青藏高原地壳运动与应变的GPS监测研究[J]. 测绘学报,2008,37(3):285-291) |
[10] | Xu Houze, Jiang Fuzhen, Zhang Chijun. Gravity Variation and Qing-Zang Bulge, Collected Works[M]. Beijing:Seismological Press,1994(许厚泽,蒋福珍,张赤军. 重力变化与青藏高原隆起[M]. 北京:地震出版社,1994) |
[11] | Wang Yong, Zhang Weimin. Gravity Change Detected by Repeated Absolute Gravity Measurements in the Western Yunnan and Lhasa, China and Its Implication[J], <em>Chinese J Geophys</em>, 2004,47(1):95-100(王勇,张为民,詹金刚, 等. 重复绝对重力测量观测到的滇西地区和拉萨点的重力变化及其意义[J]. 地球物理学报,2004,47(1):95-100) |
[12] | Sun W K, Wang Q, Li H, et al. Gravity and GPS Measurements Reveal Mass Loss Beneath the Tibetan Plateau:Geodetic Evidence of Increasing Crustal Thickness[J]. <em>Geophys Res Lett</em>,2009,36(2):DOI:10.1029/2008GL036512 |
[13] | Feng W, Zhong M, Lemoine J M, et al. Evaluation of Groundwater Deletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-Based Measurements[J]. <em>Water Resour Res</em>, 2013,49:2110-2118 |
[14] | Rodell M, Houser P R, Jambor U, et al. The Global Land Data Assimilation System[J]. <em>Bull Am Met Soc</em>,2004,85:381-394 |
[15] | Wang H S, Xiang L W, Jia L L, et al. Load Love Numbers and Green's Functions for Elastic Earth Models PREM, Iasp91, Ak135, and Modified Modes with Refined Crustal Structure from Crust 2.0[J]. <em>Computers & Geoscience</em>,2012, 49:190-199 |
[16] | Sun Wenke, Hasegwa T, Zhang Xinlin, et al. Effects of Gaussian Filter in Processing GRACE Data:Gravity Rate of Change at Lhasa, Southern Tibet[J]. <em>Sci China Earth Sci</em>,2011,54:1378-1385 |
[17] | Wang Q, Zhang P Z, Freymueller J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. <em>Science</em>,2001, 294:574-577 |
[18] | Gan W J, Zhang P Z, Shen Z K, et al. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurents[J]. <em>J Geophys Res</em>,2007,112, DOI:10.1029/2005JB004120 |
[19] | Chen W P, Yang Z. Earthquake Beneath the Himalyas and Tibet:Evidence for Strong Lithospheric Mantle[J]. <em>Science</em>, 2004, 304:1949-1952 |
[20] | Zhang Q S, Zhou Y F, Lu X S, et al. Uplift Velocity of Modern Qinghai-Tibetan Plateau[J]. <em>Chinese Science Bulletin</em>, 1991, 36(7):529-531 |
[21] | Dill R. Hydrological Model LSDM for Operational Earth Rotation and Gravity Field Variations[R]. Scientific Technical Report STR08/09, GFZ Potsdam, Germany, 2008 |
[22] | Hwang C W, Kao Y C. Spherical Harmonic Analysis and Synthesis Using FFT:Application to Temporal Gravity Variation[J]. <em>Computers & Geoscience</em>,2006,32:442-451 |
[23] | Rodell M, Isabella V, Famiglietti J S. Satellite-Based Estimates of Ground Water Depletion in India[J]. <em>Nature</em>,2009, DOI:10.1038/nature08238 |
[24] | Wang Hansheng, Jia Lulu, Wu Patrick, et al. Effects of Global Isostatic Adjustment on the Secular Changes of Gravity and Sea Level in East Asia[J]. <em>Chinese J Geophys</em>, 2010,53(11):2590-2602(汪汉胜,贾路路,Wu Patrick,等. 冰川均衡调整对东亚重力和海平面变化的影响[J]. 地球物理学报,2010,53(11):2590-2602) |
[25] | Zhong M, Duan J B, Xu H Z, et al. Trend of China Land Water Storage Redistribution at Medi and Large-Spatial Scales in Recent Five Years by Satellite Gravity Observations[J]. <em>Chinese Sci Bull</em>,2009,54(5):816-821 |
[26] | Yi S, Sun W K. Evaluation of Glacier Changes in High Mountains Asian Based on 10-year GRACE-RL05 Models[J]. <em>J Geophys Res</em>, 2014,119:2504-2517 |