|
- 2017
基于扩展场强模型的稀疏AQI空间插值新算法
|
Abstract:
针对空气质量指数(AQI)监测点分布稀疏,现有空间插值算法精度不高问题,提出了新的扩展场强模型与算法。扩展场强单参数模型引入参数c控制场强衰减程度,通过c与误差关系图并借助二分查找法计算最优c值。扩展场强双参数模型加入参数k调整场强影响范围,通过c、k与误差关系图并借助迭代双线性插值法求解最优c、k组合。以北京、天津、武汉、郑州四个城市2014-08~2015-04的50组AQI监测值为实验数据,采用交叉验证法并以RMSE、AME、PAEE为评价指标,实现了单参与双参模型及参数选取,然后与克里金法及类似的反距离加权法进行对比。实验证明,扩展场强模型能够得到针对稀疏AQI的更高插值精度,且双参数模型精度高于单参数模型。本文算法适用于采样点数目与位置均固定的稀疏数据插值,并可推广至其他类型与维度的空间数据
[1] | Xu Xiaohua, Jiang Hong, Zhang Xiuying. Variations of Atmospheric SO<sub>2</sub> and NO<sub>2</sub> Pollution in Yangtze River Delta of China[C]. The 19th International Conference on Geoinformatics,Shanghai,China,2011 |
[2] | Liu Yan, Ruan Huihua, Zhang Pu, et al. Kriging Interpolation of Snow Depth at the North of Tianshan Mountains Assisted by MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4):403-405(刘艳,阮惠华,张璞,等.利用MODIS数据研究天山北麓Kriging雪深插值[J].武汉大学学报·信息科学版,2012,37(4):403-405) |
[3] | Zou Bin, Zeng Yongnian, Qiu Yonghong, et al. Spatial and Temporal Variations of Air Pollution Exposure Risk Based on Geo-information Technology Aided Proximity Model[C]. International Conference on Geoinformatics,Beijing,China,2010 |
[4] | Narashid R H, Wan M N W M. Air Quality Monitoring Using Remote Sensing and GIS Technologies[C]. International Conference on Science and Social Research,Kuala Lumpor, Malaysia,2010 |
[5] | Liu Yongwei, Yan Qingwu, Huang Jie, et al. Spatio-temporal Distribution of API Based on GIS in China[J]. Ecology and Environmental Sciences, 2013, 22(8):1386-1394(刘永伟,闫庆武,黄杰,等.基于GIS的中国API指数时空分布规律研究[J].生态环境学报,2013,22(8):1386-1394) |
[6] | Sandeep S, Gasiewski A J. Fast Jacobian Mie Library for Terrestrial Hydrometeors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3):747-757 |
[7] | Wang Weiwu, Chen Chao. A Quantitative Analysis on Spatial Distribution of the Pollutants in the Urban Air and Their Impact Factors Based on Geostatistics and GIS:A Case Study of Hangzhou City[J]. Geographical Research, 2008, 27(2):241-250(王伟武,陈超.杭州城市空气污染物空间分布及其影响因子的定量分析[J].地理研究,2008,27(2):241-250) |
[8] | Lim H S, Matjafri M Z, Abdullah K,et al. Aerosol Optical Thickness Data Retrieval over Penang Island, Malaysia[C]. IEEE Aerospace Conference, Big Sky, MO, 2009 |
[9] | Kang Jian, Jin Rui, Li Xin. Regression Kriging-Based Upscaling of Soil Moisture Measurements From a Wireless Sensor Network and Multiresource Remote Sensing Information over Heterogeneous Cropland[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(1):92-96 |
[10] | Bell L M. The Use of Ambient Air Quality Modeling to Estimate Individual and Population Exposure for Human Health Research:A Case Study of Ozone in the Northern Georgia Region of the United States[J]. Environment International, 2006, 32:586-593 |
[11] | Matthew P F, Adrian N E. An Evaluation of Interpolation Techniques for Reconstructing Ionospheric TEC Maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2153-2164 |
[12] | Duan Ping, Sheng Yehua, Zhang Siyang, et al. A 3D Local RBF Spatial Interpolation Considering Anisotropy[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):632-637(段平,盛业华,张思阳,等.顾及异向性的局部径向基函数三维空间插值[J].武汉大学学报·信息科学版,2015,40(5):632-637) |
[13] | Zhan Changgen, Wu Yi, Wei Shuzhen,et al. Spatio-temporal Distribution of AQI in Wuhan Based on GIS[J]. Geospatial Information, 2014, 12(5):62-64(詹长根,吴艺,韦淑贞,等.基于GIS的武汉市AQI时空分布规律研究[J].地理空间信息,2014,12(5):62-64) |
[14] | Li Lixin, Losser T, Yorke C, Piltner R. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation:A Web-Based Application of Interpolating Daily Fine Particulate Matter PM 2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree[J]. International Journal of Environmental Research and Public Health, 2014, 11(9):9101-9141 |
[15] | Ferrand G, Luong M, Cloos M A, et al. Accelerating Parallel Transmit Array B1 Mapping in High Field MRI with Slice Undersampling and Interpolation by Kriging[J]. IEEE Transactions on Medical Imaging, 2014, 33(8):1726-1734 |
[16] | Bhattacharjee S, Mitra P, Ghosh S K. Spatial Interpolation to Predict Missing Attributes in GIS Using Semantic Kriging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4771-4780 |