|
- 2018
轻小型低成本无人机激光扫描系统研制与实践
|
Abstract:
无人机激光扫描系统受制于激光扫描仪、惯性测量单元(inertial measurement unit,IMU)等传感器的重量、成本以及无人机平台有效载荷、续航能力等因素的制约,不得不在保证数据质量的前提下在上述制约因素间取得平衡。高精度IMU的昂贵价格极大地限制了无人机激光扫描系统的易用性,因此轻小型低成本无人机激光扫描系统成为学术界和工业界共同关注的热点。重点阐述了小型低成本无人机激光扫描系统的两个关键点,即视觉-低成本IMU耦合的高精度定姿方法和IMU-激光扫描仪-相机的自标定方法;并阐述了基于大疆无人机飞行平台的激光扫描系统——珞珈麒麟云的研制和性能。实践表明,该激光扫描系统有高度的稳定性和可靠性,在无地面控制的情况下获取点云的精度在20 cm以内,在灾害应急、智慧城市等领域具有广泛的应用价值
[1] | Yang B,Huang R, Dong Z, et al. Two-Step Adaptive Extraction Method for Ground Points and Breaklines from LiDAR Point Clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016,119:373-389 |
[2] | Yang B,Huang R, Li J,et al. Automated Reconstruction of Building LoDs from Airborne LiDAR Point Clouds Using an Improved Morphological Scale Space[J]. Remote Sensing, 2016,9:14, doi:10.3390/rs9010014 |
[3] | Dong Z, Yang B, Hu P, et al. An Efficient Global Energy Optimization Approach for Robust 3D Plane Segmentation of Point Cloud[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,137:122-133 |
[4] | Chen C,Yang B. Dynamic Occlusion Detection and Inpainting of InSitu Captured Terrestrial Laser Scanning Point Clouds Sequence[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016,119:90-107 |
[5] | Wallace L, Lucieer A, Watson C, et al. Development of a UAV-LiDAR System with Application to Forest Inventory[J].Remote Sensing, 2012,4:1519-1543 |
[6] | Shin E H,El-Sheimy N. An Unscented Kalman Filter for In-motion Alignment of Low-Cost IMUs[J].Position Location and Navigation Symposium, 2004, doi:10.1109/PLANS.2004.1309005 |
[7] | Liang Fuxun, Yang Bisheng,Huang Ronggang, et al. Facade Solar Potential Analysis Using Multisource Point Cloud[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):225-233(梁福逊,杨必胜,黄荣刚,等. 基于多源点云的建筑物立面太阳能潜力估计[J]. 测绘学报,2018, 47(2):225-233) |
[8] | Yang B, Dai W, Dong Z, et al. Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method[J].Remote Sensing, 2016,8:372 |
[9] | Jaakkola A, Hyypp? J, Kukko A, et al. A Low-Cost Multi-sensoral Mobile Mapping System and Its Feasibility for Tree Measurements[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65:514-522 |
[10] | Yang B,Chen C. Automatic Registration of UAV-Borne Sequent Images and LiDAR Data[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015,101:262-274 |
[11] | Skaloud J,Lichti D. Rigorous Approach to Bore-Sight Self-Calibration in Airborne Laser Scanning[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2006,61:47-59 |
[12] | Shen S.Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes[J].IEEE Transactions on Image Processing, 2013,22:1901-1914 |
[13] | Li J, Yang B, Chen C, et al. Automatic Registration of Panoramic Image Sequence and Mobile Laser Scanning Data Using Semantic Features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,136:41-57 |
[14] | Filin S. Recovery of Systematic Biases in Laser Altimetry Data Using Natural Surfaces[J].Photogrammetric Engineering and Remote Sensing, 2003,69:1235-1242 |
[15] | Glennie C. Calibration and Kinematic Analysis of the Velodyne HDL-64E S2 LiDAR Sensor[J].Photogrammetric Engineering and Remote Sensing, 2012,78:339-347 |
[16] | Chan T O, Lichti D D, Glennie C L. Multi-feature Based Boresight Self-Calibration of a Terrestrial Mobile Mapping System[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2013,82:112-124 |
[17] | Nagai M, Chen T, Shibasaki R, et al. UAV-Borne 3-D Mapping System by Multisensor Integration[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47:701-708 |
[18] | Choi K, Lee I, Hong J, et al. Developing a UAV-Based Rapid Mapping System for Emergency Response[J]. Unmanned Systems Technology XI, 2009:733209 |
[19] | Wu C. Towards Linear-Time Incremental Structure from Motion[OL]. http://ccwu.me/vsfm/vsfm.pdf, 2013 |