|
- 2018
矩形方向约束的邻域空间推理
|
Abstract:
在空间计算过程中,空间物体常被描述为其最小外包矩形,因此矩形间的方向约束是空间关系的一个关键子集。在矩形代数基础上,使用一个2×2的特征矩阵来描述矩形间的169种方向约束关系,并构建矩形方向约束邻域网格,以邻域网格上对应顶点间的最短网格路径分析矩形方向约束关系间的距离。进而,分析当两个矩形的其中一个发生缩放和平移等渐变时,一种矩形方向约束关系转变为其邻近约束关系的过程,并使用特征值元组区间的笛卡尔乘积来表示矩形变形过程中所形成矩形约束的特征矩阵,最后分析总结了矩形变形时对应特征矩阵的变化特点
[1] | Freksa C. Temporal Reasoning Based on Semi-intervals[J]. Artificial Intelligence, 1992, 54(1-2):199-227 |
[2] | Güsgen H W. Spatial Reasoning Based on Allen's Temporal Logic[OL]. http://www.icsi.berkeley.edu/pubs/techreports/tr-89-049.pdf,1989 |
[3] | Ligozat G é. Reasoning About Cardinal Directions[J]. Journal of Visual Languages & Computing, 1998, 9(1):23-44 |
[4] | Gerevini A, Renz J. Combining Topological and Size Information for Spatial Reasoning[J]. Artificial Intelligence, 2002, 137(1-2):1-42 |
[5] | Balbiani P, Condotta J F, Ligozat G. Reasoning About Generalized Intervals:Horn Representability and Tractability[C]. International Workshop on Temporal Representation and Reasoning, Cape Breton, 2000 |
[6] | Vilain M, Kautz H, van Beek P. Constraint Propagation Algorithms for Temporal Reasoning:A Revised Report[M]//Readings in Qualitative Reaso-ning About Physical Systems. San Francisco:Morgan Kaufmann Publishers Inc, 1989 |
[7] | Wood J. Minimum Bounding Rectangle[M]. Berlin:Springer, 2008 |
[8] | Navarrete I, Sciavicco G. Spatial Reasoning with Rectangular Cardinal Direction Relations[C]. ECAI 2006, 17th European Conference on Artificial Intelligence, Workshop on Spatial and Temporal Reasoning, Riva del Garda, 2006 |
[9] | Navarrete I, Sciavicco G. Spatial Reasoning with Rectangular Cardinal Direction Relations-The Convex Tractable Subalgebra[J]. Annals of Mathema-tics and Artificial Intelligence, 2013, 67(1):31-70 |
[10] | Randell D A, Cui Z, Cohn A G. A Spatial Logic Based on Regions and Connection[C]. 3rd International Conference on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, 1996 |
[11] | Zhou Tao, Lu Huiling, Yang Deren, et al. Popula-rized "Egg-Folk" Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2):242-246(周涛,陆惠玲,杨德仁,等. "蛋-黄"模型的拓展研究[J]. 武汉大学学报·信息科学版, 2012, 37(2):242-246) |
[12] | Schneider M, Chen T, Viswanathan G, et al. Cardinal Directions Between Complex Regions[J].ACM Transactions on Database Systems, 2012, 37(2):1-40 |
[13] | Allen J F. Maintaining Knowledge About Temporal Intervals[J]. Readings in Qualitative Reasoning About Physical Systems, 1990, 26(11):361-372 |