|
- 2017
一种顾及区域特征差异的热红外与可见光图像多尺度融合方法
|
Abstract:
针对传统的热红外与可见光图像融合方法对比度低,容易出现边缘细节、目标等信息丢失或减弱的现象,提出一种顾及区域特征差异的热红外与可见光图像多尺度融合方法。首先采用自适应PCNN(脉冲耦合神经网络)模型和二维Renyi熵相结合的图像分割方法,分别对红外和可见光图像进行区域分割;然后利用非下采样Contourlet变换对原图像进行多尺度多方向分解,根据区域的特征差异设计不同的融合规则,融合热红外与可见光图像。实验结果表明,该方法不仅能有效地融合热红外图像的目标特征,还能更多地保留可见光图像丰富的背景信息,融合图像对比度高,在视觉效果和客观评价上优于传统融合方法
[1] | Liu Huanxi, Zhu Tianhang, Zhao Jiajia. Infrared and Visible Image Fusion Based on Region of Interest Detection and Nonsubsampled Contourlet Transform[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(5):526-534 |
[2] | Zhao Bingjie. Fusion of Infrared and Visible Image Based on Target Extraction and Contourlet Transform[J]. Journal of Information and Computational Science, 2013, 10(15):4751-4761 |
[3] | Xiang Tianzhu, Yan Li, Gao Rongrong. A Fusion Algorithm for Infrared and Visible Images Based on Adaptive Dual-channel Unit-linking PCNN in NSCT Domain[J]. Infrared Physics & Technology,2015, 69:53-61 |
[4] | Huang Xin, Wen Dawei, Xie Junfeng, et al. Quality Assessment of Panchromatic and Multispectral Image Fusion for the ZY-3 Satellite:From an Information Extraction Perspective[J].IEEE Geoscience And Remote Sensing Letters, 2014, 11(4):753-757 |
[5] | Piella G. A General Framework for Multiresolution Image Fusion:From Pixels to Regions[J]. Information Fusion, 2003, 4:259-280 |
[6] | Yang Yang, Dai Ming, Zhou Luoyu. Fusion of Infrared and Visible Images Based on NSUDCT[J]. Infrared and Laser Engineering, 2014, 43(3):961-966(杨扬,戴明,周箩鱼. 基于NSUDCT的红外与可见光图像融合[J]. 红外与激光工程, 2014, 43(3):961-966) |
[7] | Luo Xiaoyan, Zhang Jun, Dai Qionghai. A Regional Image Fusion Based on Similarity Characteristics[J]. Signal Processing, 2012, 92(5):1268-1280 |
[8] | Monica S M, Sahoo S K. Pulse Coupled Neural Networks and Its Applications[J]. Expert Systems with Applications,2014, 41(8):3965-3974 |
[9] | Sahoo P K, Arora G. A Thresholding Method Based on Two-dimensional Renyi's Entropy[J]. Pattern Recognition,2004, 37(6):1149-1161 |
[10] | Haghighat M B A, Aghagolzadeh A, Seyedarabi H. A Non-reference Image Fusion Metric Based on Mutual Information of Image Features[J]. Computers & Electrical Engineering,2011, 37(5):744-756 |
[11] | Niu Yifeng, Xu Shengtao, Wu Lizhen, et al. Airborne Infrared and Visible Image Fusion for Target Perception Based on Target Region Segmentation and Discrete Wavelet Transform[J]. Mathematical Problems in Engineering, 2012, 2012:1-10 |
[12] | Saeedi J, Faez K. Infrared and Visible Image Fusion Using Fuzzy Logic and Population-based Optimization[J]. Applied Soft Computing, 2012, 12(3):1041-1054 |
[13] | Xing Suxia, Xiao Hongbing, Chen Tianhua, et al. Study of Image Fusion Technology Based on Object Extraction and NSCT[J].Journal of Optoelectronics·Laser, 2013, 24(3):583-588(邢素霞,肖洪兵,陈天华,等. 基于目标提取与NSCT的图像融合技术研究[J]. 光电子\5激光, 2013, 24(3):583-588) |
[14] | Xing Shuai, Tan Bing,Xu Qing, et al. A New Algorithm for Remote Sensing Image Fusion Using Complex Wavelet Transform[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1):75-77(邢帅,谭兵,徐青,等. 基于复数小波变换的遥感图像融合新算法[J]. 武汉大学学报\5信息科学版,2007, 32(1):75-77) |
[15] | Ye Chuanqi, Wang Baoshu, Miao Qiguang. Fusion Algorithm of Infrared and Visible Light Images Based on NSCT Transform[J]. Systems Engineering and Electronics, 2008, 30(4):593-596(叶传奇,王宝树,苗启广. 基于NSCT变换的红外与可见光图像融合算法[J]. 系统工程与电子技术, 2008, 30(4):593-596) |
[16] | Jin Xing, Li Huihui, Shi Pili.SAR and Multispectral Image Fusion Algorithm Based on Pulse Coupled Neural Networks and Non-subsampled Contourlet Transform[J]. Journal of Image and Graphics, 2012,17(9):1188-1195(金星,李晖晖,时丕丽. 非下采样Contourlet变换与脉冲耦合神经网络相结合的SAR与多光谱图像融合[J]. 中国图像图形学报, 2012,17(9):1188-1195) |
[17] | Hu Qian, Du Junping, Fang Ming, et al. Multi-sensor Image Fusion Algorithm Based on SSIM[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1):158-162(胡前,杜军平,方明,等. 基于结构相似性的多传感器图像融合[J]. 东南大学学报(自然科学版), 2013, 43(S1):158-162) |