全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

自主卫星导航的空间基准维持
Maintenance of Space Datum for Autonomous Satellite Navigation

DOI: 10.13203/j.whugis20180169

Keywords: 自主定轨,星间链路,空间基准,星座旋转,星座漂移,先验约束,
autonomous orbit determination
,inter-satellite link,space datum,constellation rotation,constellation drift,priori constraints

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于星间测距的自主定轨必然存在星座的整体旋转和漂移,即存在星座空间基准的衰减问题,因此,卫星星座的空间基准维持是自主定轨的主要目标,也是自主定轨的核心问题之一。重点讨论卫星自主定轨中的空间基准维持方法,系统分析星地观测、星间/星地组合观测和星间观测3种观测模式下的卫星轨道参数估计方法,及其对应的空间基准维持方式;提出卫星自主定轨强基准和弱基准概念。强基准是指在星地观测或星间/星地组合观测条件下,强化地面高精度基准站坐标的定轨方式,此时卫星星座基准与地面跟踪站基准一致;弱基准是指在仅有星间链路观测条件下,采用卫星轨道信息先验弱约束的定轨方式,即弱基准是以先验轨道所对应的卫星星座的几何重心建立的。强基准充分利用了星间、星地观测网中的各类信息,计算结果可靠且精度稳定,而弱基准虽然缺少地面观测信息,但先验卫星轨道同样是基于地面跟踪网精密定轨得到的,对卫星空间基准的维持同样可靠,且定轨计算更为简单。采用北斗试验星实测数据,分别开展无基准、弱基准和强基准支持下的自主定轨试验,试验结果表明,弱基准中仅对卫星轨道倾角和升交点赤经进行先验弱约束即可抵偿卫星星座的旋转和漂移,但定轨精度略低于强基准支持下的定轨精度。在无地面跟踪系统支持的特定环境下,建议采用弱基准方法,实现真正意义上的自主定轨

References

[1]  Li Min, Shi Chuang, Zhao Qile, et al. Multi-GNSS Precision Orbit Determination[J]. Acta Geodaetica et Cartographica Sinica, 2011,40(S1):26-30(李敏,施闯,赵齐乐,等. 多模全球导航卫星系统融合精密定轨[J]. 测绘学报, 2011,40(S1):26-30)
[2]  Wen Yuanlan, Yang Yuanxi, Wang Wei. Research on Satellite Precision Orbit Robust Estimation[J]. Chinese Journal of Space Research, 2001,21(4):341-350(文援兰, 杨元喜, 王威. 卫星精密轨道抗差估计的研究[J]. 空间科学学报, 2001,21(4):341-350)
[3]  Li Jisheng. Satellite Precise Orbit Determination[M]. Beijing:The People's Liberation Army Press, 1995(李济生. 人造卫星精密轨道确定[M]. 北京:解放军出版社, 1995)
[4]  Tapley B D,Born G H,Schutz B E. Orbit Determination Fundamental and Application, Center of Space Research[M]. Austin:The University of Texas, 1986
[5]  Yang Yuanxi, Wen Yuanlan. Synthetically Adaptive Robust Filtering for Satellite Orbit Determination[J]. Science in China Series D, 2003,33(11):1112-1119(杨元喜,文援兰. 卫星精密轨道综合自适应抗差滤波技术[J]. 中国科学(D辑),2003,33(11):1112-1119)
[6]  Tao Benzao. Free Network Adjustment and Deformation Analysis[M]. Beijing:Surveying and Mapping Press, 1984(陶本藻. 自由网平差与变形分析[M]. 北京:测绘出版社,1984)
[7]  Rajan J A, Orr M, Wang P. On-Orbit Validation of GPS ⅡR Autonomous Navigation[C]. ION 59th Annual Meeting/22nd Guidance Test Symposium, Albuquerque, USA,2003
[8]  Liu Jingnan. The Equivalence of Mathematical Models for Coordinate Systems Transformation in the Adjustment for the Combination of Satellite and Terrestrial Network[J]. Geomatics and Information Science of Wuhan University, 1983, 8(1):37-50(刘经南. 卫星网与地面网联合平差坐标转换模型的等价性[J]. 武汉测绘学院学报,1983,8(1):37-50)
[9]  Liu J, Geng T, Zhao Q. Enhancing Precise Orbit Determination of COMPASS with Inter-Satellite Observations[J]. Survey Review, 2011, 43(322):333-342
[10]  Yang Yuanxi, Guo Chunxi, Liu Nian, et al. Datum and Quality Control for Synthetic Adjustment of Absolute and Relative Gravity Networks[J]. Engineering of Surveying and Mapping, 2001, 10(2):11-19(杨元喜,郭春喜,刘念,等. 绝对重力与相对重力混合平差的基准及质量控制[J]. 测绘工程, 2001, 10(2):11-19)
[11]  Huang Weibin. Theory and Application of Modern Adjustment[M]. Beijing:The People's Liberation Army Press, 1992(黄维彬. 近代平差理论及其应用[M]. 北京:解放军出版社,1992)
[12]  Song Xiaoyong. Study on the Orbit Determination of COMPASS Navigation Satellites[D]. Xi'an:Chang'an University, 2008(宋小勇. COMPASS导航卫星定轨研究[D].西安:长安大学, 2008)
[13]  Ren X, Yang Y, Zhu J,et al. Orbit Determination of the Next-Generation BeiDou Satellites with Inter Satellite Link Measurements and a Priori Orbit Constraints[J]. Advances in Space Research, 2017, 60:2155-2165
[14]  Rajan J A. Highlights of GPS Ⅱ-R Autonomous Navigation[C]. ION 58th Annual Meeting/21st Guidance Test Symposium, Albuquerque, USA, 2002
[15]  Liu Jingnan, Zeng Xuping, Xia Linyuan, et al. Algorithm and Simulation of Autonomous Orbit Determination for Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12):1040-1044(刘经南,曾旭平,夏林元,等. 导航卫星自主定轨的算法研究及模拟结果[J]. 武汉大学学报·信息科学版,2004,29(12):1040-1044)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133