全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

利用稀疏自表达实现高光谱影像波段选择
Band Selection Using Sparse Self-representation for Hyperspectral Imagery

DOI: 10.13203/j.whugis20150052

Keywords: 波段选择,稀疏自表达,多观测向量,高光谱影像,分类,快速交替方向乘子,
band selection
,sparse self-representation,multiple measurement vectors,hyperspectral imagery,classification,fast alternative direction method of multipliers

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种稀疏自表达方法来研究高光谱影像分类中的波段选择问题。该方法利用字典矩阵等于测量矩阵的条件来改进多观测向量的稀疏表达模型,将波段子集看作高光谱影像波段集合中的代表子集。稀疏自表达方法将波段选择转换为寻求多观测向量中稀疏系数矩阵的非零行向量问题,通过引入混合范数来限定非零元素行向量的个数,利用快速交替方向乘子方法求解稀疏系数矩阵,并聚类非零行向量,实现波段的有效选择。基于两个公开高光谱影像数据集并对比其他4种波段选取方法来验稀疏自表达方法。实验结果证明,稀疏自表达方法能够在计算效率明显优于基于波段相关性的线性限制最小方差方法的同时,取得与该方法和非负稀疏矩阵分解方法相匹甚至略高的总体分类精度

References

[1]  Divekar A. Theory and Applications of Compressive Sensing[D]. Indiana,USA:Purdue University, 2010
[2]  Li Shuangjiang, Qi Hairong. Sparse Representation Based Band Selection for Hyperspectral Images[C]. 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 2011
[3]  Elhamifar E, Sapiro G, Vidal R. See all by Looking at a few:Sparse Modeling for Finding Representative Objects[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, USA,2012
[4]  Yang J, Zhang Y, Yin W. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction from Partial Fourier Data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):288-297
[5]  Sun Weiwei, Halevy A, Benedetto J J, et al. UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89:25-36
[6]  Sun Weiwei, Liu Chun, Li Jialin, et al. Low-rank and Sparse Matrix Decomposition-based Anomaly Detection for Hyperspectral Imagery[J]. Journal of Applied Remote Sensing, 2014, 8(1):083 641
[7]  Shi Beiqi, Liu Chun, Sun Weiwei, et al.Sparse Nonnegative Matrix Factorization for Hypespectral Optimal Band Selection[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):351-357(施蓓琦, 刘春,孙伟伟,等. 应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J]. 测绘学报, 2014, 42(3):351-357)
[8]  Du Qian, Bioucas-Dias J M, Plaza A. Hyperspectral Band Selection Using a Collaborative Sparse Model[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012
[9]  Feng J M, Lee C H. Generalized Subspace Pursuit for Signal Recovery from Multiple -Measurement Vectors[C]. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013
[10]  Li Jiming, Qian Yuntao. Clustering-based Hyperspectral Band Selection Using Sparse Nonnegative Matrix Factorization[J]. Journal of Zhejiang University Science C, 2011, 12(7):542-549
[11]  Chen Jie, Huo Xiaoming. Sparse Representations for Multiple Measurement Vectors (MMV) in an Over-Complete Dictionary[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), Philadelphia, Pennsylvania, USA, 2005
[12]  Chepushtanova S, Gittins C, Kirby M. Band Selection in Hyperspectral Imagery Using Sparse Support Vector Machines[C]. SPIE Defense+ Security Conference, Baltimore, Maryland, USA, 2014
[13]  Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends<sup><sup>?</sup></sup> in Machine Learning, 2011, 3(1):1-122
[14]  Chang C I, Wang S. Constrained Band Selection for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1 575-1 585
[15]  Huang Yuancheng, Zhong Yanfei, Zhao Yehe, et al. Joint Blind Unmixing and Sparse Representation for Anomaly Detection in Hyperspectral Image[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1 144-1 150 (黄远程, 钟燕飞, 赵野鹤,等. 联合盲分解与稀疏表达的高光谱图像异常目标检测[J]. 武汉大学学报·信息科学版, 2015, 40(9):1 144-1 150)
[16]  Sun Weiwei, Zhang Liangpei, Li Weiyue, et al. Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2 784-2 797
[17]  Chang C I, Du Q, Sun T L, et al. A Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2 631-2 641
[18]  Hsu Paihui. Feature Extraction of Hyperspectral Images Using Wavelet and Matching Pursuit[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2):78-92
[19]  Liu Shuai,Zhu Yajie,Xue Lei. Remote Sensing Image Super-resolution Method Using Sparse Representation and Classified Texture Patches[J]. Geomatics and Information of Wuhan University, 2015, 40(5):578-582 (刘帅, 朱亚杰, 薛磊. 一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J]. 武汉大学学报·信息科学版, 2015, 40(5):578-582)
[20]  Van Den B E, Friedlander M P. Theoretical and Empirical Results for Recovery from Multiple Measurements[J]. IEEE Transactions on Information Theory, 2010, 56(5):2 516-2 527

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133