|
- 2017
附有相对权比的PEIV模型总体最小二乘平差
|
Abstract:
针对观测向量和系数矩阵权分配不合理、验前随机模型不准确的情况,以部分误差变量(partial errors-in-variables,PEIV)模型为基础,推导了附有相对权比的总体最小二乘平差算法;通过在平差准则中加入相对权比,自适应调整观测向量和系数矩阵随机元素对模型参数估计的贡献,给出了确定相对权比的验前单位权方差法和判别函数最小化迭代算法,该算法普遍适用于一般性的系数矩阵和权矩阵。通过直线拟合和坐标转换模拟算例的比较分析,发现当观测值和系数矩阵的验前单位权方差已知,且较准确时,验前单位权方差法确定相对权比和参数估计的效果较好;而以作为判别函数是判别函数最小化迭代算法中效果最好的
[1] | Pearson K. On Line and Planes of Closest Fit to Systems of Points in Space[J]. <em>Philosophical Magazine Series </em>6,1901,2(11):559-572 |
[2] | Wang Leyang. Research on Properties of Total Least Squares Estimation[J]. <em>Journal of Geodesy and Geodynamics</em>,2012,32(5):48-52(王乐洋. 总体最小二乘解性质研究[J]. 大地测量与地球动力学,2012,32(5):48-52) |
[3] | Xu Peiliang,Liu Jingnan. Variance Components in Errors-in-Variables Models:Estimability,Stability and Bias Analysis[J].<em>Journal of Geodesy</em>,2014,88(8):719-734 |
[4] | Wang Leyang,Xu Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. <em>Geomatics and Information Science of Wuhan University</em>,2011,36(8):887-890(王乐洋, 许才军. 附有相对权比的总体最小二乘平差[J]. 武汉大学学报·信息科学版,2011,36(8):887-890) |
[5] | Yang Yuanxi,Jing Yifan,Zeng Anmin. Adaptive Parameter Estimation and Inner and External Precision[J]. <em>Acta Geodaetica et Cartographica Sinica</em>,2014,43(5):441-445 (杨元喜,景一帆,曾安敏. 自适应参数估计与内外部精度的关系[J]. 测绘学报,2014,43(5):441-445) |
[6] | Schaffrin B,Wieser A. On Weighted Total Least Squares Adjustment for Linear Regression[J]. <em>Journal of Geodesy</em>,2008,82(7):415-421 |
[7] | Shen Yunzhong,Li Bofeng,Chen Yi. An Iterative Solution of Weighted Total Least Squares Adjustment[J]. <em>Journal of Geodesy</em>,2011,85(4):229-238 |
[8] | Amiri-Simkooei A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. <em>Journal of Geodesy</em>,2013,87(10-12):935-944 |
[9] | Adcock R J. Note on the Method of Least Squares[J]. <em>The Analyst</em>,1877,4(6):183-184 |
[10] | Golub G H, Van Loan C F. An Analysis of the Total Least Squares Problem[J]. <em>SIAM Journal on Numerical Analysis</em>,1980,17(6):883-893 |
[11] | Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University,2011 (王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉: 武汉大学,2011) |
[12] | Wang Leyang,Xu Caijun,Zhang Chaoyu. A Two-step Method to Determine Relative Weight Ratio Factors in Joint Inversion[J]. <em>Acta Geodaetica et Cartographica Sinica</em>,2012,41(1):19-24(王乐洋,许才军,张朝玉. 一种确定联合反演中相对权比的两步法[J]. 测绘学报,2012,41(1):19-24) |
[13] | Mahboub V. On Weighted Total Least-squares for Geodetic Transformation[J]. <em>Journal of Geod- esy</em>,2012,86(5):359-367 |
[14] | Wang Leyang,Xu Caijun. Progress in Total Least Squares[J]. <em>Geomatics and Information Science of Wuhan University</em>,2013,38(7):850-856 (王乐洋,许才军. 总体最小二乘研究进展[J]. 武汉大学学报·信息科学版,2013, 38(7):850-856) |
[15] | Fang Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions,Fixed and Random Parameters[J]. <em>Journal of Geodesy</em>,2013,87(8):733-749 |
[16] | Xu Peiliang, Liu Jingnan, Shi Chuang. Total Least Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis [J]. <em>Journal of Geodesy</em>,2012,86(8):661-675 |