全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于社交媒体的突发事件应急信息挖掘与分析
The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media

DOI: 10.13203/j.whugis20140804

Keywords: 社交媒体,突发事件,趋势分析,空间分析,数据挖掘,
social media
,sudden events,trend analysis,spatial analysis,data mining

Full-Text   Cite this paper   Add to My Lib

Abstract:

社交媒体越来越多地被看作是随人们移动的传感器,感知周围发生的事件。当突发事件发生时,大量含有位置信息的文字迅速地充斥整个社交网络。本文探讨突发事件应急信息挖掘与分析的一种新思路。基于社交媒体,建立实时应急主题分类模型,从大量、实时的文本流中快速提取、定位应急信息;针对不同主题,利用统计分析和空间分析方法,探寻突发事件的时间趋势和空间分布,为应急响应提供决策支持

References

[1]  Li L, Goodchild M F, Xu B. Spatial, Temporal, and Socioeconomic Patterns in the Use of Twitter and Flickr[J]. <em>Cartography and Geographic Information Science,</em> 2013, 40(2): 61-77
[2]  Tsou M H, Yang J A, Lusher D, et al. Mapping Social Activities and Concepts with Social Media (Twitter) and Web Search Engines (Yahoo and Bing): A Case Study in 2012 US Presidential Election[J]. <em>Cartography and Geographic Information Science,</em> 2013, 40(4): 337-348
[3]  Signorini A, Segre A M, Polgreen P M. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the US During the Influenza a H1N1 Pandemic[J]. <em>PloS One</em>, 2011, 6(5): e19467
[4]  Achrekar H, Gandhe A, Lazarus R, et al. Predicting Flu Trends Using Twitter Data[C]. 2011 IEEE Conference on Computer Communications Workshops, Shanghai, China, 2011
[5]  Wu L, Zhi Y, Sui Z, et al. Intra-urban Human Mobility and Activity Transition: Evidence from Social Media Check-in Data[J]. <em>PloS One</em>, 2014, 9(5), doi:10.1371/journal.pone.0097010
[6]  Huang L, Li Q, Yue Y. Activity Identification from GPS Trajectories Using Spatial Temporal Pois' Attractiveness[C]. Proceedings of the ACM Sigspatial International Workshop on Location Based Social Networks, Chicago, USA, 2010
[7]  Seaborn C, Attanucci J, Wilson N H M. Using Smart Card Fare Payment Data to Analyze Multi-Modal Public Transport Journeys in London [C]. The 88th Transportation Research Board Annual Meeting, Washington D C, USA, 2009
[8]  Scholz R W, Lu Y. Detection of Dynamic Activity Patterns at a Collective Level from Large-volume Trajectory Data[J]. <em>International Journal of Geographical Information Science,</em> 2014, 28(5): 946-963
[9]  Ren Huijun, Xu Tao, Li Xiang. Driving Behavior Analysis Based on Trajectory Data Collected with Vehicle-mounted GPS Receivers[J].<em> Geomatics and Information Science of Wuhan University</em>, 2014, 39(6): 739-744(任慧君, 许涛, 李响. 利用车载GPS轨迹数据实现公交车驾驶安全性分析[J]. 武汉大学学报· 信息科学版, 2014, 39(6): 739-744)
[10]  Gao S, Liu Y, Wang Y, et al. Discovering Spatial Interaction Communities from Mobile Phone Data[J]. <em>Transactions in GIS,</em> 2013, 17(3): 463-481
[11]  Chen Jia, Hu Bo, Zuo Xiaoqing, et al. Personal Profile Mining Baesd on Mobile Phone Location Data[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(6): 734-738(陈佳, 胡波, 左小清, 等. 利用手机定位数据的用户特征挖掘[J]. 武汉大学学报·信息科学版, 2014,39 (6): 734-738)
[12]  Liu Y, Sui Z, Kang C, et al. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-in Data[J]. <em>PloS One</em>, 2014, 9(1), doi:10.1371/journal.pone.0086026
[13]  Nagel A C, Tsou M H, Spitzberg B H, et al. The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets[J]. <em>Journal of Medical Internet Research</em>, 2013, 15(10),doi:10.2196/jmir.2705
[14]  Cleveland R B, Cleveland W S, McRae J E, et al. STL: A Seasonal-Trend Decomposition Procedure Based on Loess[J]. <em>Journal of Official Statistics,</em> 1990, 6(1): 3-73
[15]  Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996
[16]  Hanna R, Rohm A, Crittenden V L. We're all Connected: The Power of the Social Media Ecosystem[J]. <em>Business Horizons</em>, 2011, 54(3): 265-273
[17]  Sakaki T, Okazaki M, Matsuo Y. Tweet Analysis for Real-Time Event Detection and Earthquake Reporting System Development[J]. <em>Knowledge and Data Engineering, IEEE Transactions on</em>, 2013, 25(4): 919-931
[18]  Crooks A, Croitoru A, Stefanidis A, et al. Earthquake: Twitter as a Distributed Sensor System[J]. <em>Transactions in GIS</em>, 2013, 17(1): 124-147
[19]  Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. <em>The Journal of Machine Learning Research</em>, 2003(3): 993-1 022
[20]  Cortes C, Vapnik V. Support Vector Machine[J]. <em>Machine Learning</em>, 1995, 20(3): 273-297
[21]  Ferrari L, Rosi A, Mamei M, et al. Extracting Urban Patterns from Location-Based Social Networks[C]. The 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, Chicago, USA, 2011
[22]  Frias-Martinez V, Frias-Martinez E. Spectral Clustering for Sensing Urban Land Use Using Twitter Activity[J]. <em>Engineering Applications of Artificial Intelligence</em>, 2014, 35: 237-245

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133