|
- 2017
利用Landsat TM影像进行地表温度像元分解
|
Abstract:
提出了一种基于Landsat TM的地表温度二次像元分解方法,将地表温度的空间分辨率从120 m提高到30 m。首先,利用地表类型的线性统计模型(E-DisTrad)获取初次分解子像元的地表温度,计算得到初次分解子像元的辐亮度;然后,利用面向对象的图像分割方法获取二次分解子像元的权重,实现对地表温度的二次分解;最后,采用升尺度再分解的验证方法进行精度分析,并选取了北京市TM影像进行实例分析。实验结果表明,二次像元分解模型不仅能有效地提高地表温度的空间分辨率,反映出不同地表类型地表温度的空间差异性,而且保证了像元分解前后能量值的一致性,非常适合于复杂地表覆盖地区的热红外波段遥感影像数据的降尺度处理
[1] | Friedl M. Forward and Inverse Modeling of Land Surface Energy Balance Using Surface Temperature Measurements[J].<em>Remote Sensing of Environment</em>, 2002,79(2):344-354 |
[2] | Sandholt I. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status[J]. <em>Remote Sensing of Environment</em>, 2002,79(2):213-224 |
[3] | Wang Fei, Qin Zhihao, Wang Qianqian. A Method of TM6 Band Pixel Decomposition Based on the Earth Surface Types[J]. <em>Remote Sensing for Land & Resource,</em> 2012,94(3):54-59(王斐, 覃志豪, 王倩倩. 基于地表类型的TM6波段像元分解方法[J]. 国土资源遥感,2012,94(3):54-59) |
[4] | Li Zhaoliang, Tang Bohui. Wu Hua, et al. Satellite-Derived Land Surface Temperature:Current Status and Perspective[J]. <em>Remote Sensing of Environment</em>,2013,131:14-37 |
[5] | Simulation Study of Influence of Change of Land Surface Types on Urban Heat Island[J]. <em>Geomatics and Information Science of Wuhan University,</em> 2008, 33(12):1229-1232(曹丽琴, 张良培, 李平湘,等. 城市下垫面覆盖类型变化对热岛效应影响的模拟研究[J]. 武汉大学学报·信息科学版, 2008, 33(12):1229-1232) |
[6] | Qin Z H, Karnieli A, Berliner P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region[J]. <em>International Journal of Remote Sensing</em>, 2001,22(18):3719-3746 |
[7] | Lu D, Weng Q. SpectralMixture Analysis of ASTER Images for Examining the Relationship Between Urban Thermal Features and Biophysical Descriptors in Indianapolis, Indiana, USA[J]. <em>Remote Sensing of Environment</em>, 2006, 104(2):157-167 |
[8] | Yang H J, Cong Z T, Liu Z W,et al.Estimating Subpixel Temperatures Using the Triangle Algorithm[J]. <em>International Journal of Remote Sensing</em>, 2010, 31:6047-6060 |
[9] | Chen X L. Remote Sensing Image-Based Analysis of the Relationship Between Urban Heat Island and Land Use/Cover Changes[J]. <em>Remote Sensing of Environment</em>, 2006, 104(2):133-146 |
[10] | Essa W, Verbeiren B, Kwast J, et al.Evaluation of the DisTrad Thermal Sharpening Methodology for Urban Areas[J]. <em>International Journal of Applied Earth Observation and Geoinformation</em>, 2012, 19:163-172 |
[11] | Agam N, Kustas W P, Anderson M C, et al. A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery[J]. <em>Remote Sensing of Environment,</em>2007, 107(4):545-558 |
[12] | Yang Guijun, Liu Qinhuo, Liu Qiang, et al. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Netural Network[J]. <em>Geomatics and Information Science of Wuhan University,</em>2007, 32(9):786-790(杨贵军, 柳钦火,刘强,等. 基于遗传自组织神经元网络的可见光与热红外遥感数据融合方法[J]. 武汉大学学报·信息科学版, 2007, 32(9):786-790) |
[13] | Kustas W P, Norman J M, Anderson M C, et al. Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-Radiometric Temperature Relationship[J]. <em>Remote Sensing of Environment</em>, 2003, 85(4):429-440 |
[14] | Qin Zhihao, Zhang Minghua, Karnieli A, et al. Mono-Window Algorithm for Retriving Land Surface Temperature from Landsat TM 6 Data[J]. <em>Acta Geographica Sinica,</em>2001. 56(4):456-466(覃志豪, Zhang Minghua,Karnieli A,等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001,56(4):456-466) |
[15] | Zhu S, Guan H, Millington A C, et al. Disaggregation of Land Surface Temperature over a Heterogeneous Urban and Surrounding Suburban Area:A Case Study in Shanghai, China[J]. <em>International Journal of Remote Sensing</em>, 2013, 34(5):1707-1723 |