全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

不同函数拟合水体后向散射波形对激光测深精度的影响
The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding

DOI: 10.13203/j.whugis20150652

Keywords: 激光测深,水体后向散射,Wa-LiD,波形建模方法,体积散射函数,
laser sounding
,water column backscatter,Wa-LiD,waveform modeling method,volume scattering function

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高激光测深数据处理结果的精度,在原有的激光测深回波信号拟合方法的基础上,结合信号形成的物理过程,提出使用指数函数模拟激光测深水体后向散射回波成分的方法。利用Wa-LiD(Water LiDAR)工具生成了多组模拟数据集以对比和检验提出的新方法。对于每个可探测回波,海面回波和海底回波均使用高斯函数进行拟合,水体后向散射波形分别使用三角形、四边形、指数函数进行拟合。实验结果显示,指数函数测深误差统计量明显优于三角形和四边形拟合方法,且更适用于拟合不同水质和水深条件下水体后向散射回波信号。同时检验了体积散射函数取180°时数值对测深回波信号探测结果的影响

References

[1]  Hofton M A, Minster J B, Blair J B. Decomposition of Laser Altimeter Waveforms[J].<em>IEEE Transactions on Geoscience and Remote Sensing</em>, 2000, 38(4):1989-1996
[2]  Abdallah H, Bailly J S, Baghdadi N N, et al. Potential of Space-Borne LiDAR Sensors for Global Bathymetry in Coastal and Inland Waters[J]. <em>Selected Topics in IEEE Journal of Applied Earth Observations and Remote Sensing</em>, 2013, 6(1):202-216
[3]  Abady L, Bailly J S, Baghdadi N, et al. Assessment of Quadrilateral Fitting of the Water Column Contribution in LiDAR Waveforms on Bathymetry Estimates[J]. <em>IEEE Geoscience and Remote Sensing Letters</em>, 2014, 11(4):813-817
[4]  Cook R L, Torrance K E. A Reflectance Model for Computer Graphics[J]. <em>ACM Transactions on Graphics (TOG)</em>, 1982(1):7-24
[5]  Petzold T J. Volume Scattering Functions for Selected Ocean Waters[R].<em>San Diego:Scripps Institution of Oceanography</em>, 1972
[6]  Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. <em>Journal of the Society for Industrial & Applied Mathematics</em>, 1963, 11(2):431-441
[7]  Jutzi B, Stilla U. Laser Pulse Analysis for Reconstruction and Classification of Urban Objects[J].<em>International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences</em>, 2003, 34(3/W8):151-156
[8]  Roncat A, Wagner W, Melzer T, et al. Echo Detection and Localization in Full-Waveform Airborne Laser Scanner Data Using the Averaged Square Difference Function Estimator[J]. <em>Photogrammetric Journal of Finland</em>, 2008, 21(1):62-75
[9]  Tulldahl H M, Steinvall K O. Analytical Waveform Generation from Small Objects in LiDAR Bathymetry[J].<em>Applied Optics</em>, 1999, 38(6):1021-1039
[10]  Guenther G C, Cunningham A G, Larocque P E, et al. Meeting the Accuracy Challenge in Airborne LiDAR Bathymetry[J]. <em>Proc. Earsel Symp. Workshop on LiDAR Remote Sensing of Land & Sea</em>, 2000(1):1-27
[11]  Guenther G C, Mesick H C. Analysis of Airborne Laser Hydrography Waveforms[C]. International Society for Optics and Photonics Orlando Technical Symposium, Orlando, 1988
[12]  Wong H, Antoniou A. Characterization and Decomposition of Waveforms for LARSEN 500 Airborne System[J]. <em>IEEE Transactions on Geoscience and Remote Sensing</em>, 1991, 29(6):912-921
[13]  Allouis T, Bailly J S, Pastol Y, et al. Comparison of LiDAR Waveform Processing Methods for very Shallow Water Bathymetry Using Raman, Near-Infrared and Green Signals[J]. <em>Earth Surface Processes and Landforms</em>, 2010, 35(6):640-650
[14]  Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD:A New LiDAR Simulator for Waters[J]. <em>IEEE Geoscience and Remote Sensing Letters</em>, 2012, 9(4):744-748
[15]  Wang C, Li Q, Liu Y, et al. A Comparison of Waveform Processing Algorithms for Single-Wavelength LiDAR Bathymetry[J].<em>ISPRS Journal of Photogrammetry and Remote Sensing</em>, 2015(101):22-35
[16]  Mobley C D. Light and Water:Radiative Transfer in Natural Waters[M]. New York:Academic Press, 1994

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133