|
- 2018
拟牛顿修正法解算不等式约束加权总体最小二乘问题
|
Abstract:
根据总体最小二乘准则,可以将附有不等式约束的变量误差(errors-in-variables,EIV)模型转化为标准最优化问题,并运用有效集法、序列二次规划法等优化方法求解。已有算法在涉及计算目标函数的Hesse矩阵(二阶导数)时,存在计算量较大的缺陷。针对上述问题,利用基于拟牛顿法修正Hesse矩阵的序列二次规划算法解算附有不等式约束加权总体最小二乘问题,新算法减小了计算量,可以提高收敛速度。通过实例,证明了该算法具有很好的适用性和计算效率
[1] | Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[J]. <em>Acta Geodaetica et Cartographica Sinica</em>,2012,41(4):629(王乐洋.基于总体最小二乘的大地测量反演理论及其应用研究[J]. 测绘学报,2012,41(4):629) |
[2] | Schaffrin B, Wieser A. On Weighted Total Least Squares Adjustment for Linear Regression[J]. <em>Journal of Geodesy</em>,2008,82(7):415-421 |
[3] | Shen Yunzhong, Li Bofeng, Chen Yi. An Iterative Solution of Weighted Total Least-Squares Adjusment[J]. <em>Journal of Geodesy</em>,2010,85(4):229-238 |
[4] | Mahboub V. On Weighted Total Least-Squares for Geodetic Transformation[J]. <em>Journal of Geodesy</em>,2012,86(5):359-367 |
[5] | Fang Xing. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Germany:Leibniz University Hannover,2011 |
[6] | Zeng Wenxian, Fang Xing, Liu Jingnan, et al. Weighted Total Least Squares Algorithm with Inequality Constraints[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2014, 43(10):1013-1018(曾文宪,方兴,刘经南,等. 附有不等式约束的加权整体最小二乘算法[J]. 测绘学报,2014,43(10):1013-1018) |
[7] | Nocedal J, Wright S J. Numerical Optimization[M]. Berlin, Germany:Springer,2006. |
[8] | Wang Leyang, Xu Caijun, Wen Yangmao. Fault Parameters of 2008 Qinhai Dacaidan Mw 6.3 Earthquake from STLN Inversion and InSAR Data[J]. <em>Acta Geodaetica et Cartographica Sinica</em>,2013,42(2):168-176(王乐洋,许才军,温扬茂.利用STLN和InSAR数据反演2008年大柴旦Mw6.3级地震断层参数[J].测绘学报,2013,42(2):168-176) |
[9] | Mahboub V. On Weighted Total Least-Squares with Linear and Quadratic Constraints[J]. <em>Journal of Geodesy</em>,2013,87(3):279-286 |
[10] | Wang Leyang,Xu Guangyu. Variance Component Estimamation for Partial Errors-in-variables Model[J]. <em>Studia Geophysical et Geodaetia</em>,2016,60(1):35-55 |
[11] | Mahboub V, Sharifi M A. On Weighted Total Least Squares with Linear and Quadratic Constraints[J]. <em>Journal of Geodesy</em>,2013,87(3):607-608 |
[12] | Zhang Songlin, Tong Xiaohua, Zhang Kun. A Solution to EIV Model with Inequality Constraints and Its Geodetic Applications[J].<em>Journal of Geodesy</em>,2013,87(1):89-99 |
[13] | Zeng Wenxian, Liu Jingnan, Yao Yibin. On Partial Errors-in-variables Models with Inequality Constraints of Parameters and Variables[J]. <em>Journal of Geodesy</em>,2015,89(2):111-119 |
[14] | Peng Junhuan, Guo Chunxi, Zhang Hongping, et al. An Aggregate Constraint Method for Inequality-Constrained Least Squares Problem[J]. <em>Journal of Geodesy</em>,2006,79(12):705-713 |
[15] | Wang Leyang, Xu Caijun. Progress in Total Least Squares[J]. <em>Geomatics and Information Science of Wuhan University</em>,2013,38(7):850-856(王乐洋, 许才军. 总体最小二乘研究进展[J]. 武汉大学学报·信息科学版,2013, 38(7):850-856) |
[16] | Wang Leyang, Xu Caijun. Total Least Squres Adjustment with Weight Scaling Factor[J]. <em>Geomatics and Information Science of Wuhan University</em>,2011,36(8):887-890(王乐洋, 许才军. 附有相对权比的总体最小二乘平差[J]. 武汉大学学报·信息科学版, 2011,36(8):887-890) |
[17] | Fang Xing. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. <em>Journal of Geodesy</em>,2014,88(8):805-816 |
[18] | Fang Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. <em>Journal of Geodesy</em>,2013,87(8):733-749 |
[19] | Wang Leyang,Xu Caijun,Lu Tieding. Inversion of Strain Parameter Using Distance Changes Based on Total Least Squares[J]. <em>Geomatics and Information Science of Wuhan University</em>,2010,35(2):181-184(王乐洋, 许才军, 鲁铁定. 边长变化反演应变参数的总体最小二乘方法[J]. 武汉大学学报·信息科学版, 2010,35(2):181-184) |
[20] | Sima D M,Van H S,Golub G H. Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers[J]. <em>BIT Numerical Mathematics</em>,2004,44(4):793-812 |
[21] | Schaffrin B, Felus Y A. On Total Least-Squares Adjustment with Constraints[J]. <em>IAG-Symp</em>, 2005, 128:417-421 |
[22] | Schaffrin B, Felus Y A. An Algorithmic Approach to the Total Least-Squares Problem with Linear and Quadratic Constraints[J]. <em>Studia Geophysica et Geodaetica</em>, 2009, 53(1):1-16 |
[23] | Fang Xing. A Structured and Constrained Total Least-Squares Solution with Cross-Covariances[J]. <em>Studia Geophysica et Geodaetia</em>,2014,58(1):1-16 |
[24] | De Moor B. Total Linear Least Squares with Inequality Constraints[R]. ESAT-SISTA Report 1990-02, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium, 1990 |
[25] | Ma Changfeng. Optimization Method and the MATLAB Programming[M].Beijing:Science Press,2010(马昌凤.最优化方法及其MATLAB程序设计[M].北京:科学出版社,2010) |
[26] | Xu Peiliang, Liu Jingnan, Shi Chuang. Total Least Squares Adjustment in Partial Errors-in-variables Models:Algorithm and Statistical Analysis[J]. <em>Journal of Geodesy</em>, 2012, 86(8):661-675 |
[27] | Wang Leyang, Yu Dongdong. Virtual Observation Method to Ill-posed Total Least Squares Problem[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2014, 43(6):575-581(王乐洋,于冬冬.病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报,2014,43(6):575-581) |
[28] | Wang Leyang,Xu Guangyu. Application of Posteriori Estimation of Stochastic Model on the Weighted Total Least Squares Problem[J]. <em>Geomatics and Information Science of Wuhan University</em>,2016,41(2):255-261(王乐洋, 许光煜. 加权总体最小二乘平差随机模型的验后估计[J]. 武汉大学学报\5信息科学版,2016,41(2):255-261) |