|
- 2018
地图匹配辅助的KF-PF室内定位算法模型
|
Abstract:
针对使用智能手机进行行人航迹推算(pedestrain dead reckoning,PDR)时航向角漂移,定位精度不高,误差累积的问题,提出了一种地图匹配辅助的卡尔曼滤波-粒子滤波(Kalman filter-particle filter,KF-PF)多重滤波算法对PDR算法进行优化。在传统PDR算法的基础上,使用KF融合陀螺仪数据和地图信息解算航向角,然后采用基于地图匹配的粒子滤波算法对轨迹结果进行处理。实验结果表明,该方法消除了航向角误差过大对定位结果的影响,在提高室内定位的灵活性的同时增强了定位的稳定性和精度,并通过地图匹配减少了传统粒子滤波采样点数,降低了运算量,使其在手机平台上实时运行成为可能
[1] | Yu Yanpei. A New Indoor Map Matching Algorithm Fusing Map and Sensor Information[J].<em>Telecommunication Engineering</em>, 2014, 54(12):1656-1662(余彦培. 一种融合地图与传感器信息的室内地图匹配新算法[J]. 电讯技术, 2014, 54(12):1656-1662) |
[2] | El M K, Reboul S, Azmani M. A Map Matching Algorithm Based on a Particle filter[C]. IEEE International Conference on Multimedia Computing and Systems, Marrakech, 2014 |
[3] | Chen W, Fu Z, Chen R, et al. An Integrated GPS and Multi-sensor Pedestrian Positioning System for 3D Urban Navigation[C]. IEEE International Conference on Urban Remote Sensing Event, Shanghai, 2009 |
[4] | Tian Z, Zhang Y, Zhou M, et al. Pedestrian Dead Reckoning for MARG Navigation Using a Smartphone[J]. <em>Eurasip Journal on Advances in Signal Processing</em>, 2014, 2014(1):1-9 |
[5] | Beauregard S, Haas H. Pedestrian Dead Reckoning:A Basis For Personal Positioning[C]. The 3rd Workshop on Positioning, Navigation and Communication, Bremen, Germany, 2006 |
[6] | Jiménez R, Seco F, Prieto C, et al. A Comparison of Pedestrian Dead-Reckoning Algorithms Using a Low-Cost MEMS IMU[C]. IEEE International Symposium on Intelligent Signal Processing, Budapest, 2009 |
[7] | Tian Hui, Xia Linyuan, Mo Zhiming. Signals of Opportunity Assisted Ubiquitous Positioning and its Key Elements for Outdoor/Indoor Environment[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2009, 34(11):1372-1356(田辉, 夏林元, 莫志明, 等. 泛在无线信号辅助的室内外无缝定位方法与关键技术[J]. 武汉大学学报·信息科学版, 2009, 34(11):1372-1376) |
[8] | Sabatini A M. Quaternion-based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing[J]. <em>Biomedical Engineering IEEE Transactions on</em>, 2006, 53(7):1346-1356 |
[9] | Jeon S, Lee J, Hong H S, et al. Indoor WPS/PDR Performance Enhancement Using Map Matching Algorithm with Mobile Phone[C]. IEEE International Conference on Position, Location and Navigation Symposium, Monterey, 2014 |
[10] | Ayub S, Zhou X, Honary S, et al. Sensor Placement Modes for Smartphone Based Pedestrian Dead Reckoning[J]. <em>Lecture Notes in Electrical Engineering</em>, 2012,107:123-132 |
[11] | Yin Hong, Guo Hang, Deng Xiaohua. A Research of IMU Indoor Pedestrian Dead Reckoning Based on Foot-Mounted[J].<em>Science of Surveying and Mapping</em>,2014, 29(1):20-23(殷红, 郭杭, 邓晓华. 基于Foot-Mounted的IMU室内行人航位推算研究[J]. 测绘科学, 2014, 29(1):20-23) |
[12] | Xie Gang. Principles of GPS and Receiver Design[M]. Beijing:Publishing House of Electronics Industry,2009(谢钢. GPS原理与接收机设计[M]. 北京:电子工业出版社, 2009) |
[13] | Jian W, Andong H, Chunyan L, et al. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System[J]. <em>Sensors</em>, 2015, 15(4):7096-7124 |
[14] | Wang H, Lenz H, Szabo A, et al. WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors[C]. The 4th Workshop on Positioning, Navigation and Communication, Hannover, 2007 |
[15] | Ruan Fengli, An Qian, Wang Keji, et al. A Method of Map Matching Fused with IMU in Indoor Positioning[J]. <em>Digital Communication World</em>, 2014(S2):8-11(阮凤立, 安倩, 王克己, 等. 室内定位中融合IMU的地图匹配算法研究与实现[J]. 数字通信世界, 2014(S2):8-11) |
[16] | Deng Zhongzhe. Pedestrian Indoor Positioning Algorithms Based on Inertial Sensors and Map Matching[D]. Harbin:Harbin Institute of Technology, 2015(邓仲哲. 基于惯性传感器和地图匹配的行人室内定位算法[D]. 哈尔滨:哈尔滨工业大学, 2015) |