|
- 2016
GPS高程转换的总体最小二乘拟合推估模型
|
Abstract:
在现有的关于GPS高程转换的总体最小二乘方法研究中,通常是将高程异常转换参数的计算与待求点高程异常的计算分两步进行处理,并且只考虑由已知高程异常点的平面坐标组成的系数矩阵的误差,忽略了高程异常待求点的坐标误差。针对以上问题,本文提出了GPS高程转换的总体最小二乘拟合推估模型,将计算高程异常转换参数和待求点高程异常联合处理,且考虑到所有点的点位误差,最后采用拟合推估法进行求解。实验结果表明,本文方法能够有效地提高高程转换的精度
[1] | Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. <em>Journal of Geodesy</em>, 2012, 86(5): 359-367 |
[2] | Teunissen P J G, Simons D, Tiberius C. Probability and Observation Theory[M]. The Netherlands: Delft University of Technology, 2008 |
[3] | Wang Leyang, Xu Caijun. Progress in Total Least Square[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(7): 850-856 (王乐洋, 许才军. 总体最小二乘研究进展[J]. 武汉大学学报·信息科学版, 2013, 38(7): 850-856) |
[4] | Ding Haiyong, Sun Jingling. Research on Total Least-Squares Methods for Transformation of GPS Elevation[J]. <em>Journal of Geodesy and Geodynamics</em>, 2013, 33(3): 52-55 (丁海勇, 孙景领.GPS高程转换的总体最小二乘方法研究[J].大地测量与地球动力学,2013,33(3):52-55) |
[5] | Zhao Hui, Zhang Shubi, Zhang Qiuzhao. GPS Height Fitting of Weighted Total Least-Squares Adjustment[J]. <em>Journal of Geodesy and Geodynamics</em>, 2011,31(5):88-90(赵辉, 张书毕, 张秋昭. 基于加权总体最小二乘法的GPS高程拟合[J]. 大地测量与地球动力学, 2011, 31(5): 88-90) |
[6] | Gong Xunqiang, Chen Qing, Zhou Xiufang. The Application Research of GPS Height Fitting Based on TLS Adjustment Method[J]. <em>Bulletin of Surveying and Mapping</em>, 2014(3): 6-8(龚循强, 陈磬, 周秀芳. 总体最小二乘平差方法在GPS高程拟合中的应用研究[J]. 测绘通报, 2014(3): 6-8) |
[7] | Tao Y Q, Gao J X,Yao Y F. TLS Algorithm for GPS Height Fitting Based on Robust Estimation[J]. <em>Survey Review</em>, 2014,46(336):184-188 |
[8] | Li Bofeng, Shen Yunzhong, Li Weixiao. The Seamless Model for Three-Dimensional Datum Transformation[J]. <em>Sci China Earth Sci</em>, 2012, 42(7): 1 047-1 054 (李博峰, 沈云中,李薇晓.无缝三维基准转换模型[J].中国科学(地球科学),2012,42(7): 1 047-1 054) |
[9] | Lu Tieding, Ning Jinsheng. Total Least Squares Adjustment Theory and Its Applications[M]. Beijing: China Science and Technology Press, 2011(鲁铁定,宁津生. 总体最小二乘平差理论及其应用[M].北京:中国科学技术出版社, 2011) |
[10] | Wang Leyang. Trilateration Net's Coordinate Adjustment Based on Total Least Squares[J]. <em>Journal of Geodesy and Geodynamics</em>, 2012, 32(6): 81-85 (王乐洋. 测边网坐标的总体最小二乘平差方法[J]. 大地测量与地球动力学, 2012, 32(6): 81-85) |
[11] | Tao Benzao, Qiu Weining, Yao Yibin. Error Theory and Fundation of Surveying Adjustment[M].Wuhan: Wuhan University Press, 2009 (陶本藻,邱卫宁,姚宜斌. 误差理论与测量平差基础[M].武汉:武汉大学出版社,2009) |
[12] | Wang Zengli, Huang Teng, Deng Biao. Application of Collocation Model Based on Quadric Surface in GPS Leveling Surveying[J]. <em>Engineering of Surveying and Mapping</em>, 2009,18(1):50-52(王增利, 黄腾,邓标.基于二次曲面的拟合推估法在GPS高程测量中的应用[J].测绘工程,2009,18(1):50-52) |
[13] | Xu Shaoquan, Zhang Huahai, Yang Zhiqiang,et al. GPS Measurement Principle and Application[M]. Wuhan: Wuhan University Press, 2008 (徐绍铨, 张华海,杨志强,等.GPS测量原理及应用[M].武汉:武汉大学出版社, 2008) |
[14] | Kong Jian, Yao Yibin, Wu Han. Iterative Method for Total Least-Squares[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2010, 35(6): 711-714(孔建, 姚宜斌, 吴寒. 整体最小二乘的迭代解法[J]. 武汉大学学报·信息科学版, 2010, 35(6): 711-714) |
[15] | Li Lihua, Gao Jingxiang, Liu Jinbin. Discussion of the Methods of the Covariance Function Prediction for the Fitting of Abnormal Height[J]. <em>Engineering of Surveying and Mapping</em>,2005,14(4):33-35(李丽华, 高井祥,刘晋斌.协方差函数拟合高程异常方法探析[J].测绘工程,2005,14(4):33-35) |