|
- 2017
基于极线及共面约束条件的Kinect点云配准方法
|
Abstract:
Kinect作为轻量级手持传感器,在室内场景恢复与模型重建中具有灵活、高效的特点。不同于大多数只基于彩色影像或只基于深度影像的重建算法,提出一种将彩色影像与深度影像相结合的点云配准算法并用于室内模型重建恢复,其过程包括相邻帧数据的配准与整体优化。在Kinect已被精确标定的基础上,将彩色影像匹配得到的同名点构成极线约束与深度图像迭代最近点配准的点到面约束相结合,以提高相邻帧数据配准算法的精度与鲁棒性。利用相邻4帧数据连续点共面约束,对相邻帧数据配准结果进行全局优化,以提高模型重建的精度。在理论分析基础上,通过实验验证了该算法在Kinect Fusion无法实现追踪、建模的场景中鲁棒性依然较好,点云配准及建模精度符合Kinect观测精度
[1] | Newcombe R A, Lzadi S,Hilliges O, et al. KinectFusion:Real-Time Dense Surface Mapping and Tracking[C].Mixed and Augmented Reality (ISMAR), 10th IEEE International Symposium on, Basel, Switzerland, 2011 |
[2] | Zhang Z. A Flexible New Technique for Camera Calibration[J].<em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>,2000, 22(11):1330-1334 |
[3] | Han J, Shao L, Xu D, et al. Enhanced Computer Vision with Microsoft Kinect Sensor:A Review[J]. <em>IEEE Transactions on Cybernetics</em>, 2013,43(5):1318-1334 |
[4] | Ganganath N,Leung H.Mobile Robot Localization Using Odometry and Kinect Sensor[C].Emerging Signal Processing Applications (ESPA), IEEE International Conference on, Las Vegas, USA,2012 |
[5] | Schenker P S.Method for Registration of 3D Shapes[C]. Robotics-DL Tentative. International Society for Optics and Photonics, Tokyo, Japan, 1992 |
[6] | MacCormick J.How Does The Kinect Work?[OL].http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf, 2011 |
[7] | Ye Qin, Gui Popo.A New Calibration Method for Depth Sensor[J]. <em>Journal of Optoelectronics Laser</em>, 2015, 26(6):1146-1151(叶勤, 桂坡坡. 一种新的深度传感器内部参数标定方法研究[J]. 光电子激光, 2015, 26(6):1146-1151) |
[8] | Zheng Shuai,Hong Jun,Zhang Kang,et al.A Multi-frame Graph Matching Algorithm for Low-Band Width RGB-DSLAM[J].<em>Computer -Aided Design</em>,2016,1(1):90-103 |
[9] | Wang Yue, Huang Shoudong,Xiong Rong,et al. A Framework for Multi-session RGBD SLAM in Low Dynamic Workspace Environment[C].CAAI Transactions on Intelligence Technology, Beijing, China, 2016 |
[10] | Abdel-Hakim A E, Farag A A. CSIFT:A SIFT Descriptor with Color Invariant Characteristics[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), New York, USA, 2006 |
[11] | Bay H, Tuytelaars T, Gool L V. Surf:Speeded up Robust Features[C]. European Conference on Computer Vision, Heidelberg, Berlin, German, 2006 |
[12] | Zhang Z.Microsoft Kinect Sensor and Its Effect[J]. <em>IEEE MultiMedia</em>, 2012, 19(2):4-10 |
[13] | Correa D S O, Sciotti D F, Prado M G,et al. Mobile Robots Navigation in Indoor Environments Using Kinect Sensor[C].Critical Embedded Systems (CBSEC), Second Brazilian Conference on, Brazil, Campinas, 2012 |