|
- 2017
附加辅助层析区域提高射线利用率的水汽反演方法
|
Abstract:
在已有的全球导航卫星系统水汽反演技术中,能够利用的观测值是完整穿过整个层析区域的卫星射线。由于卫星、接收机几何位置分布以及层析区域选择的特定性,许多卫星射线是从层析区域侧面穿出,这些射线通常当作无效信息被剔除,降低了层析结果的精度。针对该缺点,提出并实现了一种附加辅助层析区域提高射线利用率的水汽反演方法,使从研究区域侧面穿出的信号信息也可以被利用。基于美国得克萨斯州(Texas)地区的连续运行参考站(Continuously Operation Reference Stations,CORS)网的实测数据,结合层析区域内的无线电探空仪数据进行实验,结果表明,该方法能够提高水汽反演结果的精度,其均方根误差的改善率为14.6%
[1] | Zhang Shuangcheng, Ye Shirong, Wan Rong, et al. Preliminary Tomography Spatial Wet Refractivity Distribution Based on Kalman Filter[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2008,33(8):796-799(张双成,叶世榕,万蓉,等. 基于Kalman滤波的断层扫描初步层析水汽湿折射率分布[J]. 武汉大学学报\5信息科学版, 2008,33(8):796-799) |
[2] | Ye Shirong, Jiang Peng, Liu Yanyan. A Water Vapor Tomographic Numerical Quadrature Approach with Ground Based GPS Network[J].<em>Acta Geodaetica et Cartographica Sinica</em>, 2013,42(5):654-660(叶世榕,江鹏,刘炎炎.地基GPS网层析水汽三维分布数值积分方法[J].测绘学报,2013,42(5):654-660) |
[3] | Xia Pengfei, Cai Changsheng, Dai Wujiao, et al. Three-Dimension Water Vapor Tomography Using Ground-Based GPS and COSMIC Occupation Observation[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013,38(8):892-896(夏鹏飞,蔡昌盛,戴吾蛟,等. 地基GPS联合COSMIC掩星数据的水汽三维层析研究[J] 武汉大学学报\5信息科学版, 2013,38(8):892-896) |
[4] | Ran B R, Ge W Z. Singular Value Decomposition Method Compared with Damping Least Square Method[J]. <em>Geophysical Computing Technology, </em>1997, 1:46-49 |
[5] | Rocken C, Hove T V, Johnson J, et al. GPS/STORM-GPS Sensing of Atmospheric Water Vapor for Meteorology[J]. <em>Journal of Atmospheric and Oceanic Technology</em>, 1995, 12(3):468-478(下转第页) |
[6] | He Lin, Liu Lintao, Su Xiaoqing, et al.Algebraic Reconstruction Algorithm of Vapor Tomography[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2015, 44(1):32-38(何林, 柳林涛, 苏晓庆, 等. 水汽层析代数重构算法[J]. 测绘学报, 2015, 44(1):32-38) |
[7] | Wang Jiuke, Han Suqin, Bian Hai, et al. Characteristics of the Three-Dimensional GPS Tomography Water Vapor Field During the Rainstorm[J]. <em>Acta Scientiarum Naturalium Universitatis Pekinensis</em>, 2014, 50(6):1053-1064(王久珂, 韩素芹, 边海,等.一次暴雨过程中GPS三维层析水汽场的变化特征[J]. 北京大学学报(自然科学版), 2014, 50(6):1053-1064) |
[8] | Bevis M, Businger S, Herring T A, et al. GPS Meteorology:Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. <em>Journal of Geophysical Reseach Atmospheres,</em> 1992, 97(D14):15787-15801 |
[9] | Yu Shengjie, Liu Lintao. Application of Fitting Method by Selection of the Parameter Weights on GPS Water Vapor Tomography[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2009,34(1):183-186(于胜杰,柳林涛. 利用选权拟合法进行GPS水汽层析解算[J] 武汉大学学报\5信息科学版, 2009,34(1):183-186) |
[10] | Yu Shengjie, Liu Lintao, Liang Xinghui. Influence Analysis of Constraint Conditions on GPS Water Vapor Tomography[J].<em>Acta Geodaetica et Cartographica Sinica</em>, 2010,39(5):491-496(于胜杰,柳林涛,梁星辉.约束条件对GPS水汽层析解算的影响分析[J].测绘学报,2010,39(5):491-496) |
[11] | Chen B Y, Liu Z Z. Voxel-Optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model[J]. <em>Journal of Geodesy,</em> 2014, 88:691-703 |
[12] | Niell A E, Coter A J, Solheim F S, et al. Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Rdiometer, GPS, and VLBI[J]. <em>Journal of Atmospheric and Oceanic Technology</em>, 2001, 18(6):830-850 |
[13] | Troller M B, Urki B, Cocard M, et al. 3-D Refractivity Field from GPS Double Difference Tomography[J]. <em>Geophys Res Lett</em>, 2002, 29(24):2149-2152 |
[14] | Rohm W, Bosy J. Local Tomography Troposphere Model over Mountains Area[J]. <em>Geophysical Research Letteus</em>, 2009, doi:10.1016/j.atmosres.2009.03.013. |
[15] | Bender M, Stosius R, Zus F, et al. GNSS Water Vapor Tomography-Expected Improvements by Combing GPS, GLONASS and Galileo Observations[J]. <em>Advances in Space Research</em>, 2010, 47(5):886-897 |
[16] | Adeyemi B, Joerg S. Analysis of Water Vapor over Nigeria Using Radiosonde and Satellite Data[J]. <em>Journal Applied Meteorology and Climatology</em>, 2012, 51:1855-1866 |
[17] | Liu Z Z, Wong M S, Nichol J, et al. A Multi-Sensor Study of Water Vapour from Radiosonde, MODIS and AERONET:A Case Study of Hong Kong[J]. <em>International Journal of Climatology</em>, 2013, 33(1):109-120 |
[18] | Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. <em>Annales Geophysica</em>, 2000, 18(2):223-234 |
[19] | Bender M, Dick G, Ge M, et al. Development of a GNSS Water Vapour Tomography System Using Algebraic Reconstruction Techniques[J]. <em>Adv. Space Res.</em>, 2011, 47(10):1704-1720 |
[20] | Bi Y M, Mao J, Li C. Preliminary Results of 4D Water Vapor Tomography in the Troposphere using GPS[J]. <em>Advaucesin Atmospheric Sciences,</em> 2006, 23:551-560 |
[21] | Elósegui P A. Ruis J L, Davis G, et al. An Experiment for Estimation of the Spatial and Temporal Variations of Water Vapor Using GPS Data[J]. <em>Physics and Chemistry of the Earth</em>, 1998, 23(1):125-130 |
[22] | Gusfarienza H, Yuwono B D, Awaluddin M, et al. Penentuan Zenith Tropospheric Delay and Precipitation Vapor Menggunakan Pejragkat Lunak GAMIT[J]. <em>Jurnal Geodesi Undip</em>, 2015, 4(2):78-86 |
[23] | Herring T A, King R W, McClusky S C. Documentation of the GAMIT GPS Analysis Software release 10.4[OL]. http://www-gpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf, 2010 |