全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一种基于渐消因子的区间卡尔曼滤波器方法
Kalman Filtering for Ultra-Tight Coupled from Stable State to Catastrophe State in Noise Condition

DOI: 10.13203/j.whugis20150567

Keywords: 超紧耦合,锁相环,积分卡尔曼滤波器,稳态突变,区间运算,
ultra-tight coupled
,phase lock loop,quadrature Kalman filter,stable to catastrophe,interval computation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在噪声环境中,运动目标发生稳态突变会降低卡尔曼滤波器的滤波性能,进而导致组合导航的可靠性降低,导航系统抗干扰能力下降,影响导航的精确度。为了提高卡尔曼滤波器性能,提高抗干扰能力和导航精度,在采用基于卡尔曼滤波器的超紧耦合同时,提出一种新型的基于渐消因子的区间卡尔曼滤波器算法。该算法通过引入渐消因子和区间矩阵对滤波器增益矩阵进行实时调整,并利用区间运算中的交集运算将各种误差源约束到交集区间,进而保证在区间运算中保真集合映射的完备性并取得最优化。结果显示,该算法能够克服原有滤波器算法的缺陷,在噪声环境中提升对稳态突变目标的跟踪能力,且在噪声中滤波器效果提高,算法计算量没有明显增加

References

[1]  Julier S J, Uhlmann J K. A New Extension of Kalman Filter to Nonlinear Systems[C]. The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, Chicago, USA, 1997
[2]  Arasaratnam I, Haykin S, Elliott R J. Discrete Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature[J]. Proceedings of the IEEE, 2007, 95(5):953-977
[3]  Moore R E, Kearfott R B, Cloud M J. Introduction to Interval Analysis[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2009
[4]  Wan E A, Van Der Merwe R. The Uscented Kalman Filter for Nonlinear Estimation[J]. Proceeding of the IEEE, 2000, 46(2):153-158
[5]  Thrun S, Fox D. Robust Monte Carlo Localization for Mobile Robots[J]. Artifical Intelligence, 2001, 128(1-2):174-188
[6]  Cheng Shuiying. Comments on Particle Filter[J]. Journal of Astronautics, 2008, 29(4):43-45(程水英. 粒子滤波评述[J]. 宇航学报, 2008,29(4):43-45)
[7]  Souto R F, Ishihara J Y, Borges G A. A Robust Extended Kalman Filter for Discrete-Time Systems with Uncertain Dynamics, Measurements and Correlated Noise[C]. American Control Conference, St, Louis, USA, 2009
[8]  Zheng Xin. SINS/GPS Tightly-Coupled Integrated Navigation[J].Journal of Chinese Inertial Technology, 2010, 19(1):34-37(郑辛. SINS/GPS紧耦合组合导航[J]. 中国惯性技术学报, 2010, 19(1):34-37)
[9]  Deng X L,Guo W Z, Xie J Y. Particle Filter Based on Strong Tracking Filter[C]. 4th International Conf. on Machine Learning and Cybernetics, Guangzhou, China, 2005
[10]  Stefan K, Moritz M H,Gert F T. Realization of a Deeply Coupled GPS/INS Navigation System Based on INS-VDLL Integration[C]. Institute of Navigation NTM, San Diego, USA, 2007
[11]  Zhao L, He Z. An In-Coordinate Interval Adaptive Kalman Filtering Algorithm for INS/GPS/SMNS[C]. 10th Industrial Informatics(INDIN) Conference, Beijing, China, 2012
[12]  Qin Yongyuan. Inertial Navigation[M]. Beijing:Science Press, 2010(秦永元. 惯性导航[M]. 北京:科学出版社,2010)
[13]  Ding Yu, Sennott J. Ultra-Tight Coupling(UTC) Technique in GPS RAIM[C]. Institute of Navigation GNSS, 17th International Technical Meeting of the Satellite Division, Long Beach, USA, 2004
[14]  Tsui J B. Fundamentals of Global Positioning System Receivers:A Software Approach[M].New Jersey:John Wiley&Sons Inc, 2005
[15]  Guo D, Wang X D. Quasi-Monte Carlo Filtering in Nonlinear Dynamic Systems[J].IEEE Transactions on Signal Processing, 2006, 54(6):2087-2098
[16]  Duan Zhansheng. A Strong Tracking State Estimator and Simulation[J]. Journal of Simulation, 2004, 16(5):1020-1023(段战胜. 一种强跟踪自适应状态估计器及其仿真研究[J]. 系统仿真学报, 2004, 16(5):1020-1023)
[17]  Jow D J. Optimization and Sensitivity Analysis of GPS Receiver Tracking Loops in Dynamic Environments[J]. IEEE Proc Radar Sonar Navig, 2001, 148:241-250
[18]  Sennott J, Senffner D. Robustness of Tightly Coupled Integrations for Real-Time Centimeter GPS Positioning[C]. 10th International Technical Meeting of the Satellite Division of the US Institute of Navigation, Kansas, USA,1997

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133