全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一种新的遥感影像变化检测方法
A New Change Detection Method of Remote Sensing Image

DOI: 10.13203/j.whugis20150025

Keywords: 变化检测,像斑,卡方变换,样本选择,最大期望算法,
image object
,change detection,chi square transformation,sample selection,expectation maximization

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对地理国情监测中大幅面多时相遥感影像变化检测的需求,提出了一种基于卡方变换和样本选择的面向对象遥感影像变化检测方法。首先对多时相遥感影像进行多尺度分割获取像斑;然后,提取像斑的多维特征,采用基于卡方变换的特征融合方法计算像斑的加权差异度;最后,自适应选择训练样本,通过基于最大期望算法的贝叶斯阈值确定方法获取变化阈值,并对加权差异影像进行二值分割获取变化检测结果。以武汉市东湖高新技术开发区为例,利用多时相高分辨率遥感影像进行土地覆盖变化检测。试验结果表明,该方法可以克服全样本变化向量分析法及全样本卡方变换检测法难以满足阈值确定条件的不足,获得更准确的变化阈值,保证变化检测正确率高而又有效地降低漏检率,从而获得更好的变化检测结果,在地理国情监测中具有一定的应用价值

References

[1]  Wang Yan, Shu Ning, Gong Yan. Determination of New Class Properties of the Changed Image Segments Using MRF Graph Model[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2012, 37(5): 542-545 (王琰, 舒宁, 龚龑. 利用马尔柯夫随机场图模型的变化像斑类别判定方法[J]. 武汉大学学报·信息科学版, 2012, 37(5): 542-545)
[2]  Dian Yuanyong, Fang Shenghui, Yao Chonghuai. The Geographic Object-based Method for Change Detection with Remote Sensing Imagery[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(8): 906-912(佃袁勇, 方圣辉, 姚崇怀. 一种面向地理对象的遥感影像变化检测方法[J]. 武汉大学学报·信息科学版, 2014, 39(8): 906-912)
[3]  Brozzone L, Prieto D F. Automatic Analysis of the Difference Image for Unsupervised Change Detection[J]. <em>IEEE Transaction on Geoscience and Remote Sensing</em>, 2000, 38 (3):1 171-1 182
[4]  Li Deren, Sui Haigang, Shan Jie. Discussion on Technologies of Geographic National Condition Monitoring[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2012, 37(5): 506-512 (李德仁, 眭海刚, 单杰. 论地理国情监测的技术支撑[J]. 武汉大学学报·信息科学版, 2012, 37(5): 506-512)
[5]  Farid M, Gabriele M, Sebastiano B S. Unsupervised Change Detection Methods for Remote Sensing Images [J]. <em>Optical Engineering </em>, 2002, 41(12): 3 288-3 297
[6]  Haverkamp D, Tsatsoulis C. Information Fusion for Estimation of Summer MIZ Ice Concentration form SAR Imagery[J]. <em>IEEE Trans Geoscience Remote Sensing</em>, 1999, 37(3): 1 278-1 294
[7]  Zhang Qian, Jia Yonghong, Wu Xiaoliang, et al. A Rapid Image Registration Method Based on Restricted Geometry Constrains for Large-size Remote Sensing Image[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(1):17-21 (张谦, 贾永红, 吴晓良,等. 一种带几何约束的大幅面遥感影像自动快速配准方法[J]. 武汉大学学报·信息科学版, 2014, 39(1): 17-21)
[8]  Addabbo A D, Satalino G, Pasquariello G, et al. Three Different Unsupervised Methods for Change Detection: An Application[C]. Geoscience and Remote Sensing Symposium, Anchorage, 2004
[9]  Du Peijun, Liu Sicong. Change Detection from Multi-temporal Remote Sensing Images by Integrating Multiple Features [J]. <em>Journal of Remote Sensing</em>, 2012, 16(4):663-677(杜培军,柳思聪.融合多特征的遥感影像变化检测[J]. 遥感学报,2012, 16(4):663-677)
[10]  Bazi Y, Bruzzone L, Melgani F. Image Thresholding Based on the EM Algorithm and the Generalized Gaussian Distribution[J]. <em>Pattern Recognition</em>, 2007, 40(2):619-634

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133