全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

引黄灌区水稻叶面积指数的高光谱估测模型
Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone

DOI: 10.13203/j.whugis20150132

Keywords: 水稻,叶面积指数,高光谱,估测模型,引黄灌区,
rice
,leaf area index,hyperspectral,estimation model,Ningxia irrigation region

Full-Text   Cite this paper   Add to My Lib

Abstract:

水稻叶面积指数(leaf area index,LAI)是评价其长势的重要农学参数,高光谱遥感能够实现叶面积指数的快速无损监测。为了寻找反演水稻LAI的最优植被指数,扩展水稻LAI高光谱估测模型的普适性,选取宁夏引黄灌区水稻为研究对象,通过设置不同氮素处理,借助相关分析、回归分析等方法研究高光谱植被指数与水稻LAI之间的定量关系,并通过确立的最优波段组合,构建4种植被指数与水稻LAI的高光谱反演模型。结果表明,水稻LAI在抽穗末期达到最大值,并随氮素水平的增加而增加;水稻冠层原始光谱反射率在400~722 nm和1 990~2 090 nm波段与LAI达到极显著负相关水平,在近红外区域760~1 315 nm与LAI呈极显著正相关。模型检验结果表明,以比值植被指数RVI(850,750)为变量建立的水稻LAI估测模型最佳,研究结果可为水稻LAI的高光谱估测提供地域参考

References

[1]  Wang F M, Huang J F, Zhou Q F, et al. Optimal Waveband Identification for Estimation of Leaf Area Index of Paddy Rice[J]. J. Zhejiang Univ. Sci. B, 2008, 9(12):953-963
[2]  Pu Ruiliang, Gong Peng. Hyperspectral Remote Sensing and Its Applications[M]. Beijing:Higher Education Press, 2000:1-254(浦瑞良,宫鹏. 高光谱遙感及其应用[M]. 北京:高等教育出版社, 2000:1-254)
[3]  Yang Yan, Tian Qingjiu. Principal Component Analysis Method for Retrieving Leaf Area Index of Rice from Hyperspectral Data[J]. Remote Sensing for Land & Resources, 2007(3):47-50, 61(杨燕,田庆久. 高光谱反演水稻叶面积指数的主成分分析法[J]. 国土资源遥感, 2007(3):47-50, 61)
[4]  Xue Lihong, Cao Weixing, Luo Weihong, et al. Relationship Between Spectral Vegetation Indices and LAI in Rice[J]. Acta Phytoecologica Sinica, 2004, 28(1):47-52(薛利红,曹卫星,罗卫红,等. 光谱植被指数与水稻叶面积指数相关性的研究[J]. 植物生态学报, 2004, 28(1):47-52)
[5]  Yang Xiaohua, Huang Jingfeng, Wang Xiuzhen, et al. The Estimation Model of Rice Leaf Area Index Using Hyperspectral Data Based on Support Vector Machine[J]. Spectroscopy and Spectral Analysis, 2008, 28(8):1837-1841(杨晓华,黄敬峰,王秀珍,等. 基于支持向量机的水稻叶面积指数高光谱估算模型研究[J]. 光谱学与光谱分析, 2008, 28(8):1837-1841)
[6]  Nguy-Robertson A L, Peng Y, Gitelson A A, et al. Estimating Green LAI in Four Crops:Potential of Determining Optimal Spectral Bands for a Universal Algorithm[J]. Agricultural and Forest Meteorology, 2014(192-193):140-148
[7]  Ruffin C, King R L, Younan N H. A Combined Derivative Spectroscopy and Savitzky-Golay Filtering Method for the Analysis of Hyperspectral Data[J].GIScience & Remote Sensing, 2008, 45(1):1-15
[8]  Qi J, Chehbouni A, Huete A R, et al. A Modified Soil Adjusted Vegetation Index[J]. Remote Sensing of Environment,1994, 48(2):119-126
[9]  Wang Xiuzhen, Huang Jingfeng, Li Yunmei, et al. The Study on Hyperspectral Remote Sensing Estimation Models About LAI of Rice[J]. Journal of Remote Sensing, 2004, 8(1):81-88(王秀珍,黄敬峰,李云梅,等. 水稻叶面积指数的高光谱遥感估算模型[J]. 遥感学报, 2004, 8(1):81-88)
[10]  Carlson T N, Ripley D A. On the Relation Between NDVI, Fractional Vegetation Cover, and Leaf Area Index[J]. Remote Sensing of Environment, 1997, 62(3):241-252
[11]  Haboudane D. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies:Modeling and Validation in the Context of Precision Agriculture[J]. Remote Sensing of Environment, 2004, 90(3):337-352
[12]  Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-Grass Prairie, Pawnee National Grassland, Colorado[C]. The 8th International Symposium on Remote Sensing of the Environment Ann Arbor, Michigan, 1972
[13]  Jordan C F. Derivation of Leaf Area Index from Quality of Light on the Forest Floor[J]. Ecology, 1969, 50(4):663-666
[14]  Shibayama M, Akiyama T. Seasonal Visible,Near-Infrared and Mid-Infrared Spectra of Rice Canopies in Relation to LAI and Above-Ground Dry Phytomass[J]. Remote Sensing of Environment, 1989, 27(2):119-127
[15]  Chen J M, Cihlar J. Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images[J]. Remote Sensing of Environment, 1996, 55(2):153-162
[16]  Wang Chunmei, Gu Xingfa, Yu Tao, et al. Spatial and Temporal Variability of Spring Wheat Leaf Area Index and Coverage in Northwest China[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8):254-261(王春梅,顾行发,余涛,等. 农田春小麦叶面积指数和覆盖度时空变异性研究[J]. 农业机械学报, 2014, 45(8):254-261)
[17]  Li Xinchuan, Zhang Youjing, Bao Yansong, et al. Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression[J].Remote Sensing, 2014, 6(7):6221-6241
[18]  Xu Peng, Gu Xiaohe, Meng Lumin, et al. Change of LAI and Spectral Response for Rice Under Flood and Waterlogging Stress[J].Spectroscopy and Spectral Analysis, 2013, 33(12):3298-3302(徐鹏,顾晓鹤,孟鲁闽,等. 洪涝胁迫的水稻叶面积指数变化及其光谱响应研究[J]. 光谱学与光谱分析, 2013, 33(12):3298-3302)
[19]  Liu Zhanyu, Huang Jingfeng, Wang Fumin, et al. Adjusted-Normalized Difference Vegetation Index for Estimating Leaf Area Index of Rice[J].Scientia Agricultura Sinica, 2008, 41(10):3350-3356(刘占宇,黄敬峰,王福民,等. 估算水稻叶面积指数的调节型归一化植被指数[J]. 中国农业科学, 2008, 41(10):3350-3356)
[20]  Rouse J W, Haas R H, Schell J A. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation[M]. College Station:Texas A and M University Press, 1974

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133