|
- 2017
采用交替K-奇异值分解字典训练的图像超分辨率算法
|
Abstract:
采用稀疏表示的图像超分辨率算法中,双字典训练算法与字典的细节恢复能力相关,针对已有双字典训练算法使字典缺乏高频细节信息的特点,提出了一种交替K-奇异值分解字典训练算法。该算法分为训练和测试部分。在训练部分每次字典更新都采用奇异值分解所得到的向量对低高频样本块进行最佳低秩逼近,使得低高频样本块随着迭代次数的增加逐渐取得相同或者相似的稀疏表示系数。在测试过程中,测试低频样本块可以利用低频字典取得的稀疏表示系数与高频字典相乘得到高频细节信息。实验表明,与目前已有算法相比,该算法能够得到高频细节较丰富的图像,平均峰值信噪提高0.3 dB以上,结构相似度提高0.01左右
[1] | Wang S, Zhang L, Liang Y, et al. Semi-Coupled-Dictionary Learning with Applications to Image Super-resolution and Photo-Sketch Synthesis[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012 |
[2] | Timofte R, De Smet V, Van Gool L. A+:Adjusted Anchored Neighborhood Regression for Fast Super-Resolution[C].Asian Conference of Computer Vision, Singapore City, Singapore, 2014 |
[3] | Zhang Xianda. Matrix Analysis and Applications[M]. Beijing:Tsinghua University Press, 2004:350-351(张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社, 2004:350-351) |
[4] | Timofte R, De Smet V, Van Gool L. Anchored Neighborhood Regression for Fast Example-Based Super-resolution[C]. IEEE International Conference on Computer Vision, Portland, Oregon, USA, 2013 |
[5] | Purkait P, Pal N R, Chanda B. A Fuzzy-Rule-Based Approach for Single Frame Super Resolution[J].IEEE Transactions on Image Processing, 2014, 23(5):2277-2290 |
[6] | Yang J, Wang Z, Lin Z, et al. Coupled Dictionary Training for Image Super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8):3467-3478 |
[7] | Gao X, Zhang K, Tao D, et al. Image Super-resolution with Sparse Neighbor Embedding[J]. IEEE Transactions on Image Processing, 2012, 21(7):3194-3205 |
[8] | Zhang K, Gao X, Tao D, et al. Single Image Super-resolution With Non-Local Means and Steering Kernel Regression[J].IEEE Transactions on Image Processing, 2012, 21(11):4544-4556 |
[9] | Peleg T, Elad M. A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution[J].IEEE Transactions on Image Processing, 2014, 23(6):2569-2582 |
[10] | Zhang K, Gao X, Tao D, et al. Single Image Super-resolution with Multiscale Similarity Learning[J].IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(10):1648-1659 |
[11] | Irani M, Peleg S. Improving Resolution by Image Registration[J]. CVGIP:Graphical Models and Image Processing, 1991, 53(3):231-239 |
[12] | Marquina A, Osher S J. Image Super-resolution by TV-Regularization and Bregman Iteration[J]. Journal of Scientific Computing, 2008, 37(3):367-382 |
[13] | Liu Shuai,Zhu Yajie,Xue Lei. Remote Sensing Image Super-resolution Method Using Sparse Representation and Classified Texture Patches[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):578-582(刘帅,朱亚杰,薛磊. 一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J]. 武汉大学学报·信息科学版, 2015, 40(5):578-582 |
[14] | Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612 |
[15] | Hou H, Andrews H. Cubic Splines for Image Interpolation and Digital Filtering[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1978, 26(6):508-517 |
[16] | Tropp J A. Greed is Good:Algorithmic Results for Sparse Approximation[J].IEEE Transactions on Information Theory, 2006, 50(10):2231-2242 |
[17] | Chen X, Qi C. Low-Rank Neighbor Embedding for Single Image Super-Resolution[J].IEEE Signal Processing Letters, 2014, 21(1):79-82 |
[18] | Zeyde R, Protter M, Elad M. On Single Image Scale-Up Using Sparse-Representation[J].Lecture Notes in Computer Science, 2010, 6920(1):711-730 |
[19] | Yang J, Wang Z, Lin Z, et al. Coupled Dictionary Training for Image Super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8):3467-3478 |
[20] | Glasner D, Bagon S, Irani M. Super-resolution from a Single Image[C]. IEEE International Conference on Computer Vision, Kyoto, Japan, 2009 |
[21] | Dong W, Zhang L, Shi G, et al. Nonlocally Centralized Sparse Representation for Image Restoration[J].IEEE Transactions on Image Processing, 2013, 22(4):1620-1630 |
[22] | Dong W, Zhang L, Shi G, et al. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7):1838-1857 |
[23] | Yang J, Lin Z, Cohen S. Fast Image Super-resolution Based on In-place Example Regression[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013 |
[24] | Wei Shiyan,Shen Zhenrong,Zhang Shuo,et al. Moon Rover Image Super-Resolution Reconstruction Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4):436-439(魏士俨,申振荣,张烁,等. 月球车图像超分辨率重建算法[J]. 武汉大学学报·信息科学版, 2013, 38(4):436-439 |
[25] | He Li, Qi Hairong, Zaretzki R. Beta Process Joint Dictionary Learning for Coupled Feature Spaces with Application to Single Image Super-resolution[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013 |
[26] | Aharon M, Elad M, Bruckstein A. K-SVD:An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322 |