|
- 2016
基于稀疏多尺度分割和级联形变模型的行人检测算法
|
Abstract:
行人检测是视频大数据中提取信息的关键技术之一,是视频大数据挖掘的关键环节。提出了一种基于稀疏多尺度分割和级联形变模型的行人检测算法。首先设计基于图像纹理的稀疏多尺度分割算法提取潜在行人区域,完成初级多尺度检测;同时缩小检测范围,剔除大量背景区域;再基于级联形变模型在候选特征区域进行精细检测,最终实现由粗到细的快速行人检测。在TUD-Crossing和TUD-Pedestrian等公开数据集上对算法进行了测试。实验结果表明,本文算法降低了虚警率,提升了检测速度
[1] | Li Deren, Li Qingquan, Yang Bishen, et al. Techniques of GIS,GPS and RS for the Development of Intelligent Transportation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4):331-336(李德仁,李清泉,杨必胜.3S技术与智能交通[J]. 武汉大学学报·信息科学版, 2008, 33(4):331-336) |
[2] | O'Leary D E. Artificial Intelligence and Big Data[J]. IEEE Intelligent Systems, 2013, 28(2):96-99 |
[3] | Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005 |
[4] | Dollár P, Belongie S, Perona P. The Fastest Pedestrian Detector in the West[C]. BMVC 2010, Aberystwyth, UK, 2010 |
[5] | Shannon C E. A Mathematical Theory of Communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1):3-55 |
[6] | Andriluka M, Roth S, Schiele B. People-tracking-by-detection and People-detection-by-tracking[C]. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008 |
[7] | Zhu Qiang, Shai A, Chert Y M. Fast Human Detection Using a Cascade of Histograms of Oriented Gradients[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006 |
[8] | Viola P, Jones M J. Robust Real-time Face Detection[J]. International Journal of Computer Vision, 2004, 57(2):137-154 |
[9] | Huang Qian, Gu Jiefeng, Yang Wenliang. Pedestrian Detection Based on Histograms of Oriented Gradients[J]. Science Technology and Engineering, 2009, 9(13):3646-3651(黄茜, 顾杰峰, 杨文亮. 基于梯度向量直方图的行人检测[J]. 科学技术与工程, 2009, 9(13):3646-3651) |
[10] | Felzenszwalb P, McAllester D, Ramanan D. A Discriminatively Trained, Multiscale, Deformable Part model[C]. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008 |
[11] | Felzenszwalb P F, Girshick R B, McAllester D. Cascade Object Detection with Deformable Part Models[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010 |
[12] | Wojek C, Schiele B. A Performance Evaluation of Single and Multi-feature People Detection[J]. Pattern Recognition, 2008(7):82-91 |
[13] | Wang Xiaoyu, Han T X, Yan Shuicheng. An HOG-LBP Human Detector with Partial Occlusion Handling[C]. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, 2009 |
[14] | Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-based Models[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2010, 32(9):1627-1645 |
[15] | Ouyang Wanli, Wang Xiaogang. Single-pedestrian Detection Aided by Multi-pedestrian Detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013 |
[16] | Dollar P, Wojek C, Schiele B, et al. Pedestrian Detection:An Evaluation of the State of the Art[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(4):743-761 |
[17] | Kearns M J, Vazirani U V. An Introduction to Computational Learning Theory[M]. Massachusetts:MIT Press, 1994:1-7 |