|
- 2017
北斗卫星伪距偏差模型估计及其对精密定位的影响
|
Abstract:
现阶段北斗卫星导航系统(BeiDou navigation satellite system,BDS)的同步地球轨道(geostationary orbits,GEO)卫星、中倾斜地球同步轨道(inclined geo-synchronous orbits,IGSO)卫星和中圆地球轨道(medium earth orbit,MEO)卫星均存在伪距偏差,该伪距偏差的存在对精密定位的研究及其应用产生了较大的影响。根据北斗IGSO和MEO卫星的伪距偏差与高度角和频率相关的误差特性,本文分析了测站数目及分布,以及观测时长对建模的影响,选择18个测站2015年全年的数据作为MEO卫星的建模数据,其中可以连续观测到全弧段IGSO卫星的4个测站用于IGSO卫星的建模,采用加权分段线性拟合联合抗差估计的方法建立了北斗卫星伪距偏差改正模型。模型改正后,北斗IGSO和MEO卫星的伪距偏差得到明显的削弱,相比于传统的伪距偏差改正模型,精密单点定位(precise point positioning,PPP)的定位精度和收敛时间均得到提升
[1] | Li X X, Ge M R, Dai X L, et al. Real-time Multi-GNSS Precise Positioning System: GPS, GLONASS, BeiDou, and Galileo[J]. German Navigation. 2015,89:607-635 |
[2] | Wanninger L, Beer S. BeiDou Satellite-induced Code Pseudorange Variations: Diagnosis and Therapy[J].GPS Solutions, 2015,19(4):639-648 |
[3] | Zhang Xiaohong, Ding Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013,38(7):832-835 (张小红,丁乐乐.北斗二代观测值质量分析及随机模型精化[J].武汉大学学报·信息科学版,2013,38(7):832-835) |
[4] | Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Astrodynamics,1992:1 647-1 660 |
[5] | Hauschild A, Montenbruck O, Thoelert S, et al. A Multi-technique Approach for Characterizing the SVN49 Signal Anomaly, Part 1: Receiver Tracking and IQ Constellation[J].GPS Solutions, 2012, 16(1):19-28 |
[6] | Montenbruck O,Hauschild A, Steigenberger P, et al. A Compass for Asia: First Experience with the BeiDou-2 Regional Navigation System[C]. Poster at IGS Workshop in Olsztyn, Poland, 2012 |
[7] | Li X, Ge M, Zhang H, et al. The GFZ Real-time GNSS Precise Positioning Service System and Its Adaption for Compass[J].Advances in Space Research, 2013, 51(6):1 008-1 018 |
[8] | Li X, Ge M, Zhang H, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-fixing in Real-time Precise Point Positioning[J].Journal of Geodesy, 2013, 87(5):405-416 |
[9] | Yao Yibin. Research on the Algorithm and Realization of Post-processing for GPS Precise Positioning and Orbit Determination[D].Wuhan University,2004 (姚宜斌. GPS精密定位定轨后处理算法与实现[D]. 武汉大学, 2004) |
[10] | Zhang X H, He Xiyang. BDS Triple-frequency Carrier-phase linear Combination Models and Theircharacteristics[J]. Science China Earth Sciences, 2015, 58(06):896-905 |
[11] | Li M, Qu L, Zhao Q, et al. Precise Point Positioning with the BeiDou Navigation Satellite System[J]. Sensors, 2014, 14(1):927 |
[12] | Montenbruck O, Hauschild A, Steigenberger P, et al. Three's the Challenge: A Close Look at GPS SVN62 Triple-frequency Signal Combinations Find Carrierphase Variations on the New L5[J].GPS World, 2010(8):8-19 |
[13] | Zhang Xiaohong, Guo Fei, Li Pan, et al. Real-time Quality Control Procedure for GNSS Precise Point Positioning. [J]. Geomatics and Information Science of Wuhan University, 2012,37(8):940-944 (张小红, 郭斐, 李盼,等. GNSS精密单点定位中的实时质量控制[J]. 武汉大学学报·信息科学版, 2012, 37(8):940-944) |
[14] | Wu X, Hu X, Wang G, et al. Evaluation of COMPASS Ionospheric Model in GNSS Positioning[J]. Advances in Space Research, 2013, 51(6):959-968 |
[15] | Hauschild A, Montenbruck O, Sleewaegen J M, et al. Characterization of Compass M-1 Signals[J].GPS Solutions, 2012, 16(1):117-126 |
[16] | Montenbruck O, Rizos C, Weber R, et al. Getting A Grip on Multi-GNSS: The International GNSS Service MGEX Campaign[J]. GPS World, 2013, 24(2013-07):44-49 |
[17] | Bakker P F D, Tiberius C C J M, Marel H V D, et al. Short and Zero Baseline Analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals[J].GPS Solutions, 2012, 16(1):53-64 |