全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

测量数据不确定性度量的最小模糊熵算法
Using Minimum Fuzzy Entropy Algorithm to Measure Uncertainty of Geodetic Data

DOI: 10.13203/j.whugis20140770

Keywords: 数据不确定性,测量不确定度,模糊熵准则,函数模型,最小模糊熵估计,
data uncertainty
,measurement uncertainty,fuzzy entropy criterion,function model,least fuzzy entropy estimation

Full-Text   Cite this paper   Add to My Lib

Abstract:

测量数据的质量及可靠性取决于测量数据不确定性的大小。从如何评价测量数据的不确定性入手,以测量不确定度理论与模糊数学为基础,构建以测量不确定度为未知参数的测量数据不确定性评价的函数模型,提出“模糊熵测度”作为函数模型求解的最优准则并建立相应的算法,应用高程监测网数据进行解算并与最小二乘估计结果进行比较,结果证明了该方法的可行性

References

[1]  Shi Yufeng, Shi Wenzhong, Jin Fengxiang. Hybrid Entropy Model of Spatial Data Uncetrainty in GIS[J].Geomatics and Information Science of Wuhan University, 2006,31(1):82-85(史玉峰,史文中,靳奉祥.GIS中空间数据不确定性的混合熵模型研究[J].武汉大学学报·信息科版,2006,31(1):82-85)
[2]  Zhu Changqing, Zhang Guoqin, Wang Guangxia. An Error Entropy Model for GIS Spatial Linear[J]. Geomatics and Information Science of Wuhan University, 2005,30(5):405-407(朱长青,张国芹,王光霞.GIS中三维空间直线的误差熵模型[J]. 武汉大学学报·信息科学版,2005,30(5):405-407)
[3]  Alkhatib H, Neumann I, Kutterer H.Uncertainty Modeling of Random and Systematic Errors of Monte Carlo and Fuzzy Techniques[J]. Journal of Applies Geodesy, 2009, 3(2):67-80
[4]  Guo Jinyun, Li Chengyao,Cui Xianguo, et al. The Gauss-Markov Model Solved by Fuzzy Mathematics Theory[J]. Site Investigation and Surveying Practice, 1996,2:21-26(郭金运,李成尧,崔先国,等.高斯-马尔柯夫模型的模糊解算[J].军工勘察,1996,2:21-26)
[5]  Fu Jiangque, Gao Jingxiang, Cheng Zhengfeng, et al. Weighted Solution Theory for Maximum Possilbility Estimation and Its Data Quality Evaluation[J].Journal of Geomatics Science and Technology, 2010, 27(4):239-242(付江缺,高井祥,程正逢,等.极大可能性估计带权解算理论及数据质量评定[J].测绘科学技术学报,2010,27(4):239-242)
[6]  Li Dajun, Gong Jianya, Xie Gangsheng, et al. Error Entorpy Band for Linear Segment in GIS[J]. Geomatics and Information Science of Wuhan University, 2002,27(5):462-466(李大军,龚健雅,谢刚生,等.GIS中线元的误差熵带研究[J].武汉大学学报·信息科学版,2002,27(5):462-466)
[7]  Chen Wei, Zhang Jian. Least Uncertainty Estimation Theory and Its Applications in Survey Data Processing[J]. Bulletin of Surveying and Mapping, 2013,1:16-18(陈伟,张践.最小不确定度估计及其在测量数据处理中的应用[J].测绘通报,2013,1:16-18)
[8]  You Yangsheng,Ma Li, Liu Xing. On Estimation of Error Entropy[J]. Geomatics and Information Science of Wuhan University, 2008,33(7):748-751(游扬声,马力,刘星.误差熵的估计问题研究[J].武汉大学学报·信息科学版,2008,33(7):748-751)
[9]  Bai Dimou.Deformation Observation and Analysis of Engineering Building[M]. Chengdu:Southwest Jiaotong University Press,2002(白迪谋.工程建筑变形观测与变形分析[M]. 成都:西南交通大学出版社, 2002)
[10]  Kutterer H. Uncertainty Assessment in Geodetic Data Analysis[C]. IAG First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, Zurich, Switzerland, 2001
[11]  Yang Yuanxi. Some Notes on Uncertainty.[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(5):646-650(杨元喜.卫星导航的不确定性、不确定度与精度若干注记[J].测绘学报, 2012, 41(5):646-650)
[12]  Tao Benzao. Theory of Uncertainty of Quality Control in GIS[J]. Journal of Institute of Surveying and Mapping, 2000,17(4):235-238(陶本藻.GIS质量控制中不确定度理论[J].测绘学院学报, 2000, 17(4):235-238)
[13]  Zou Yonggang, Zhai Jingsheng,Liu Yanchun, et al. Seabed DEM Construction Based on Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2011,36(8):964-968(邹永刚,翟京生,刘雁春,等.利用不确定度的海底数字高程模型构建[J]. 武汉大学学报·信息科学版,2011,36(8):964-968)
[14]  Tao Benzao, Lan Yueming. The Statistical Estimation Method of GIS Overlay Uncertainty[J].Geomatics and Information Science of Wuhan University, 2001,26(2):101-104(陶本藻,蓝悦明.GIS叠置位置不确定度的统计估计方法[J]. 武汉大学学报·信息科学版,2001,26(2):101-104)
[15]  Zhang Zhenglu, Fan Guoqing, Zhang Songlin, et al. General Reliability of Measurement[J]. Geomatics and Information Science of Wuhan University, 2012,37(5):577-581(张正禄,范国庆,张松林,等. 测量的广义可靠性研究[J]. 武汉大学学报·信息科学版,2012,37(5):577-581)
[16]  Shi Yufeng, Jin Fengxiang, Wang Jian. Information Entropy Based Gross Error Discrimination Method for Surveying Data[J]. Bulletin of Surveying and Mapping, 2002,2:9-13(史玉峰,靳奉祥,王健.基于信息熵的测量数据粗差识别法[J].测绘通报,2002,2:9-13)
[17]  Sun Haiyan. Entropy and the Uncertainty Interval[J].Journal of Wuhan Technical University of Surveying and Mapping, 1994, 19(1):63-71(孙海燕.熵与不确定度区间[J].武汉测绘科技大学学报, 1994, 19(1):63-71)
[18]  Song Yingchun, Jin Hao, Cui Xianqiang. Adjustment Algorithm About Observation Data with Uncertain[J].Geomatics and Information Science of Wuhan University, 2014,39(7):788-792(宋迎春,金昊,崔先强.带有不确定性的观测数据平差解算方法[J]. 武汉大学学报·信息科学版,2014, 39(7):788-792)
[19]  Ye Depei. Understanding Evaluation and Application of Measurement Uncertainty[M]. Beijing:China Metrology Publishing House,2013(叶德培.测量不确定度理解评定与应用[M].北京:中国计量出版社,2013)
[20]  Chen Wei, Wang Xinzhou. Least Uncertainty Estimation Theory and Its Application to Resolving Morbid Problems[J]. Geomatics and Information Science of Wuhan University,2008, 33(7):752-754(陈伟,王新洲.最小不确定度估计原理及其病态问题解法研究[J]. 武汉大学学报·信息科学版,2008,33(7):752-754)
[21]  Deluca A, Termini S. A Definition of Non-probabilist Entropy in Setting of Fuzzy Sets Theory[J]. Information Control, 1972,10(20):301-312

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133