|
- 2016
南极查尔斯王子山脉1:50000 基础地理信息获取方法
|
Abstract:
南极查尔斯王子山脉实地科学考察的顺利开展需要该区域1:50 000基础地理信息数据作为支撑。国产高分辨率资源三号立体影像为基础地理信息数据的获取提供了必要的遥感数据支持。充分利用资源三号立体数据,在冰、云和陆地高程卫星(the ice, cloud, and land elevation satellite, ICESat)上的地学激光测高系统(Geoscience Laser Altimeter System, GLAS)等多源遥感信息的辅助下,制作了南极查尔斯王子山脉1:50 000基础地理信息成果,并对其进行了精度分析。分析结果表明,数字高程模型(DEM)的高程精度优于5.31 m,数字正射影像图(DOM)成果与南极洲陆地卫星影像镶嵌图比较的较差中误差为16.30 m。因此,在南极地区利用资源三号立体数据集成各种遥感数据制作1:50 000基础地理信息成果是高效实用的
[1] | Liu Bin, Sun Xiliang, Di Kaicang, et al. Accuracy Analysis and Validation of ZY-3' s Sensor Corrected Products[J]. <em>Remote Sensing for Land & Resources</em>, 2012, 4: 36-40(刘斌, 孙喜亮, 邸凯昌,等. 资源三号卫星传感器校正产品定位精度验证与分析[J]. 国土资源遥感, 2012, 4: 36-40) |
[2] | Li Deren. China's First Civilian Three-line-array Stereo Mapping Satellite: ZY-3[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2012, 41(3): 317-322(李德仁.我国第一颗民用三线阵立体测绘卫星--资源三号测绘卫星[J].测绘学报,2012,41(3):317-322) |
[3] | ASTER GDEM Validation Team. ASTER Global DEM Validation Summary Report[OL].https://lpdaac.usgs.gov/sites/default/files/public/aster/docs/ASTER_GDEM_Validation_Summary_Report.pdf,2014 |
[4] | Tang Xinming, Zhang Guo, Zhu Xiaoyong, et al. Triple Linear-array Imaging Geometry Model of Ziyuan-3 Surveying Satellite and Its Validation[J].<em>Acta Geodaetica et Cartographica Sinica</em>, 2012, 41(2): 191-198(唐新明,张过,祝小勇,等.资源三号测绘卫星三线阵成像几何模型构建与精度初步验证[J].测绘学报, 2012, 41(2): 191-198) |
[5] | Tang Xinming, Zhou Ping, Zhang Guo, et al. Research on a Production Method of Sensor Corrected Products for ZY-3 Satellite[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(3):287-294,299(唐新明, 周平, 张过,等. 资源三号测绘卫星传感器校正产品生产方法研究[J].武汉大学学报\5信息科学版, 2014, 39(3):287-294,299) |
[6] | Han Ling. An Experiment of Gross Error Detection and Cull Way Based on Slope Information in Grid DEM[J]. <em>Journal of Chang'an University(Earth Science Edition)</em>, 2003, 25(1): 74-75(韩玲. 格网DEM中基于坡度信息的粗差检测与剔除方法试验[J]. 长安大学学报(地球科学版), 2003, 25(1): 74-75) |
[7] | Rosenholm D, Torlegard K. Three Dimensional Absolute Orientation of Stereo Models Using Digital Elevation Models[J]. <em>Photogrammet ric Engineering and Remote Sensing</em>, 1988, 54(10): 1385-1389 |
[8] | Schutz B E. Laser Footprint Location (Geolocation) and Surface Profiles Version 3.0[OL]. http://www.csr.utexas.edu/glas/pdf/atbd_geoloc_10_02.pdf,2014 |
[9] | Geoscience Laser Altimeter System Science Team. Geoscience Laser Altimeter System Science Requirements[OL]. http://www.csr.utexas.edu/glas/pdf/sci_reqs_v15.pdf,2014 |
[10] | Zhang G, Xie H, Kang S, et al. Monitoring Lake Level Changes on the Tibetan Plateau Using ICESat Altimetry Data (2003-2009)[J]. <em>Remote Sens Environ</em>, 2011, 115(7): 1733-1742 |
[11] | Bamber J L, Bindschadler R A. An Improved Elevation Dataset for Climate and Ice-sheet Modelling: Validation with Satellite Imagery[J]. <em>Annals of Glaciology</em>, 1997, 25: 438-444 |
[12] | Bamber J L, Ekholm S, Krabill W B. The Accuracy of Satellite Radar Altimeter Data over the Greenland Ice Sheet Determined from Airborne Laser Data[J]. <em>Geophysical Research Letters</em>, 1998, 25(16): 3177-3180 |
[13] | Liu H, Jezek K, Li B. Development of Antarctic Digital Elevation Model by Integrating Cartographic and Remotely Sensed Data: A Geographic Information System Based Approach[J]. <em>Journal of Geophysical Research</em>, 1999, 104(23): 199-213 |
[14] | Lee D S, Storey J C, Choate M J, et al. Four Years of Landsat-7 On-orbit Geometric Calibration and Performance[J]. <em>IEEE Transactions on Geoscience and Remote Sensing</em>, 2004, 42(12): 2786-2795 |