全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

车载LiDAR海量点云数据管理与可视化研究
Data Management and Visualization of Mobile Laser Scanning Point Cloud

DOI: 10.13203/j.whugis20150386

Keywords: 车载激光扫描,八叉树,点云数据管理,可视化,移动测量,
mobile laser scanning
,octree,point cloud data management,visualization,mobile mapping system

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了支持车载移动激光扫描点云数据的高效管理与快速可视化,提出了一种适用于车载海量点云的数据组织方法。该方法将原始点云数据分段后生成轨迹信息用于快速索引,分别对每段数据建立基于八叉树结构的LOD(levels of detail)索引,并采用多线程动态调度技术实现基于视点的海量点云渲染与漫游,显著提高了车载点云数据的调度效率。实验结果证明该点云数据组织方法是一种适合车载点云数据的高效管理方法

References

[1]  Zhi Xiaodong,Lin Zongjian,Su Guozhong,et al.Data Organization Based on Modified Quad Tree for LiDAR Point Cloud[J].Computer Engineering and Application,2010,46(9):71-74(支晓栋,林宗坚,苏国中,等.基于改进四叉树的LiDAR点云数据组织研究[J].计算机工程与应用,2010,46(9):71-74)
[2]  Yang Jiansi.A Method Combing the Model of the Global Quadtree Index with Local KD-Tree for Massive Airborne LiDAR Point Cloud Data Organization[J]. Geomatics and Information Science of Wuhan University,2014,39(8):918-922(杨建思. 一种四叉树与KD树结合的海量机载LiDAR数据组织管理方法[J].武汉大学学报·信息科学版,2014,39(8):918-922)
[3]  Wand M,Berner A,Bokeloh M,et a1.Processing and Interactive Editing of Huge Point Clouds from 3D Scanners[J].Computers&Graphics,2008,32(2):204-220
[4]  Elseberg J,Borrmann D,Nüchter A.One Billion Points in the Cloud-An Octree for Efficient Processing of 3D Laser Scans[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,76:76-88
[5]  Liao Liqiong,Bai Junsong,Luo De'an. Integrated Point Cloud Storage Structure Based on Octree and KDTree[J]. Computer Systems & Applications, 2012,21(3):87-90(廖丽琼,白俊松,罗德安.基于八叉树及KD树的混合型点云数据存储结构[J].计算机系统应用,2012,21(3):87-90)
[6]  Mehra R,Tripathi P,Sheffer A,et al.Visibility of Noisy Point Cloud Data[J].Computers & Graphics,2010,34(3):219-230
[7]  Ravada S,Horhammer M,Baris M K.Point Cloud:Storage,Loading,and Visualization[C].National Science Foundation Tera Grid Workshop on Cyber-GIS,Washington DC,USA,2010
[8]  Xie Hong,Wu Boyi,Zhao Zhan.A Novel Organization Method of Massive Point Cloud[J].Remote Sensing Information,2013,28(6):26-32(谢洪,吴博义,赵展.一种新的海量点云数据管理方法研究[J].遥感信息,2013,28(6):26-32)
[9]  Palarola R.Stream-Processing Points[C].The Conference on Visualization'05,Minneapolis,USA,2005
[10]  Huang Xianfeng,Tao Chuang,Jiang Wanshou,et al.Real Time Display for Airborne LiDAR Point Cloud Data[J]. Geomatics and Information Science of Wuhan University,2005,30(11):975-978(黄先锋,陶闯,江万寿,等.机载激光雷达点云数据的实时渲染[J].武汉大学学报·信息科学版,2005,30(11):975-978)
[11]  Gobbetti E,Marton F, Iglesias G, et a1. A Single-pass GPU Ray Casting Framework for Interactive Out-of-Core Rendering of Massive Volumetric Datasets[J]. Visual Computing,2008,24:797-806
[12]  Gong Jun,Ke Shengnan,Zhu Qing,et al.An Efficient Point Cloud Management Method Based on a 3D R-Tree[J].Photogrammetric Emgineering & Remote Sensing,2012,78(4):393-381
[13]  Ma Hongchao, Wang Zongyue. Distributed Data Organization and Parallel Data Retrieval Methods for Huge Laser Scanner Point Clouds[J]. Computers & Geosciences, 2011, 37(2):193-201
[14]  Wei Zheng. Automated Extraction of Buildings and Facades Reconstructon from Mobile LiDAR Point Clouds[D].Wuhan:Wuhan University,2012(魏征.车载LiDAR点云中建筑物的自动识别与立面几何重建[D].武汉:武汉大学,2012)
[15]  Boubekeur T,Schlick C.Interactive Out of Core Texturing with Point-sampled Textures[C].The 3rd Eurographics/IEEE VGTC Conference on Point-Based Graphics, Switzerland,2006
[16]  Luebke D, Watson B, Cohen J.et al.Level of Detail for 3D Graphics[M].USA:Elsevier,2003
[17]  Lu Mingyue,He Yongjian.Organization and Index Method for 3D Point Cloud Data[J].Earth Informatation Journal,2008,10(2):190-194(路明月,何永健.三维海量点云数据的组织与索引方法[J].地球信息科学,2008,10(2):190-194)
[18]  Wand M.Point Based Multi-resolution Rendering[D].Germany:University of Tubingen,2004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133