|
- 2018
植被冠层光谱和叶片光谱的尺度转换
|
Abstract:
叶片光谱是估算植被生化参数的重要依据。然而,遥感影像获取的光谱为像元及冠层光谱,因此,在进行植被生化参数的遥感定量估算时,需将冠层光谱转化到叶片尺度。根据几何光学模型原理,推导出植被冠层光谱和叶片光谱的尺度转换函数,将冠层光谱转换到叶片尺度。首先,采用叶片光谱模拟模型PROSPECT模拟出叶片水平的光谱;其次,在几何光学模型4-scale模型中,通过改变叶片光谱和叶面积指数(leaf area index,LAI),模拟出不同叶片特征下的冠层光谱。最后,通过LAI建立两个查找表,一个是传感器观测到树冠光照面和背景光照面概率的查找表,另一个是多次散射因子M的查找表,从而实现冠层光谱和叶片光谱的转化。结果表明,利用4-scale模型能实现冠层光谱与叶片光谱的尺度转换,此方法有很好的适用性
[1] | Renzullo L J, Blanchield A L, Guillermin R, et al. Comparison of PROSPECT and HPLC Estimates of Leaf Chlorophyll Contents in a Grapevine Stress Study[J]. Internationnl Journal of Remote Sen-sing, 2006, 27(4):817-823 |
[2] | Zarco-Tejada P J, Miller J R, Noland T L, et al. Scaling-up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data[J]. IEEE Transactions on Geosciences and Remote Sensing, 2001, 39(7):1491-1507 |
[3] | Huemmrich K. The GeoSAIL Model:A Simple Addition to the SAIL Model to Describe Discontinuous Canopy Reflectance[J]. Remote Sensing of Environment, 2001, 75(3):423-431 |
[4] | Jacquemoud S, Ustin S L, Verdebout J, et al. Estimating Leaf Biochemistry Using the PROSPECT Leaf Optical Properties Model[J]. Remote Sensing of Environment, 1996, 56(3):194-202 |
[5] | Zhang Y Q, Chen J M, Miller J R, et al. Leaf Chlorophyll Content Retrieval from Airborne Hyperspectral Remote Sensing Imagery[J]. Remote Sen-sing of Environment, 2008, 112(7):3234-3247 |
[6] | Verhoef W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling:The SAIL Model[J]. Remote Sensing of Environment, 1984, 16(2):125-141 |
[7] | Yu Ying, Fan Wenyi, Yang Xiguang. Comparisons of Three Models for Vegetation Canopy Bi-directional Reflectance Distribution Function[J]. Chinese Journal of Plant Ecology, 2012, 36(1):55-62(于颖, 范文义, 杨曦光. 三种植被冠层二向反射分布函数模型的比较[J]. 植物生态学报, 2012, 36(1):55-62) |
[8] | Zhang Y Q, Chen J M, Miller J R, et al. Leaf Chlorophyll Content Retrieval from Airborne Hyperspectral Remote Sensing Imagery[J]. Remote Sen-sing of Environment, 2008, 112(7):3234-3247 |
[9] | Niu Liming, Meng Jihua, Wu Bingfang, et al. Research on Standard Preprocessing Flow for HJ-1A HSI Level 2 Data Product[J]. Remote Sensing for Land & Resources, 2011, 88(1):77-82(钮立明, 蒙继华, 吴炳方, 等. HJ-1A星HSI数据2级产品处理流程研究[J]. 国土资源遥感, 2011, 88(1):77-82) |
[10] | Chen J M, Leblanc S G. A Four-scale Bidirectional Reflectance Model Based on Canopy Architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1316-1337 |
[11] | Yang X G, Yu Y, Fan W Y. Chlorophyll Content Retrieval from Hyperspectral Remote Sensing Ima-gery[J]. Environmental Monitoring and Assessment,2015,187(7):456 |
[12] | Yang Xiguang, Yu Ying, Huang Haijun, et al. Estimation of Forest Canopy Nitrogen Content Based on Remote Sensing[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6):536-543(杨曦光, 于颖, 黄海军, 等. 森林冠层氮含量遥感估算[J]. 红外与毫米波学报, 2012, 31(6):536-543) |
[13] | Yang Xiguang, Fan Wenyi, Yu Ying. Estimation of Forest Canopy Chlorophyll Content Based on PROSPECT and SAIL Models[J]. Spectroscopy and Spectral Analysis, 2010, 30(11):3022-3026(杨曦光,范文义,于颖. 基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演[J]. 光谱学与光谱分析, 2010, 30(11):3022-3026) |
[14] | Jacquemoud S. PROSPECT:A Model of Leaf Optical Properties[J]. Remote Sensing of Environment, 1990, 34(2):75-91 |
[15] | Niu Zheng, Wang Changyao. Remote Sensing and Applications for Carbon Cycle[M]. Beijing:Sciences Press, 2008(牛铮, 王长耀. 碳循环遥感基础与应用[M]. 北京:科学出版社, 2008) |