|
- 2018
GPS坐标时间序列噪声估计及相关性分析
|
Abstract:
比较分析了极大似然估计法、最小二乘方差分量估计法以及最小范数二次无偏估计法对GPS站坐标时间序列噪声的估计效果,确定最小范数二次无偏估计法为最优的噪声方差估计方法。在此基础上对中国及其周边区域20个IGS站坐标时间序列中各方向噪声方差进行一元线性回归分析。结果表明,中国及其周边区域IGS站不同方向的噪声间具有中等强度以上的相关性,其中N方向闪烁噪声与其他方向闪烁噪声的相关性要强于白噪声。水平方向的噪声振幅能够解释垂直方向噪声振幅变化的40%~60%,而N方向噪声振幅能够解释E方向噪声振幅变化的60%~80%,获得的线性回归方程具有使用价值
[1] | Tong Haibo, Zhang Guozhu. Robust Positioning Algorithm with Modified M-estimation for Multiple Outliers[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(4):366-371(仝海波,张国柱.改进M估计的抗多个粗差定位解算方法[J]. 测绘学报, 2014,43(4):366-371) |
[2] | Williams S D P. CATS:GPS Coordinate Time Series Analysis Software[J]. GPS Solutions, 2008, 12(2):147-153 |
[3] | Williams S D P. The Effect of Coloured Noise on the Uncertainties of Rates Estimated from Geodetic Time Series[J]. Journal of Geodesy, 2003, 76(9):483-494 |
[4] | Zhao Changsheng, Tao Benzao. Kalman Filtering of Linear System with Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2):180-182,207(赵长胜,陶本藻.有色噪声作用下的卡尔曼滤波[J].武汉大学学报·信息科学版, 2008,33(2):180-182,207) |
[5] | Cui Xizhang, Yu Zongchou, Tao Benzao, et al. Ge-neral Surveying Adjustment[M].Wuhan:Wuhan University Press, 2009(崔希璋,於宗俦,陶本藻,等.广义测量平差[M]. 武汉:武汉大学出版社, 2009) |
[6] | Niu X, Chen Q, Zhang Q, et al. Using Allan Variance to Analyze the Error Characteristics of GNSS Positioning[J]. GPS Solutions, 2014, 18(2):231-242 |
[7] | Mao A, Harrison C G A, Dixon T H. Noise in GPS Coordinate Time Series[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B2):2797-2816 |
[8] | Wang W, Zhao B, Wang Q, et al. Noise Analysis of Continuous GPS Coordinate Time Series for CMONOC[J]. Advances in Space Research, 2012, 49(5):943-956 |
[9] | Sheng Zhou, Xie Shiqian, Pan Chengyi. Probability Theory and Mathematical Statistics[M]. Beijing:Higher Education Press, 2008(盛骤,谢式千,潘承毅.概率论与数理统计[M]. 北京:高等教育出版社, 2008) |
[10] | Amiri-Simkooei A R. Noise in Multivariate GPS Position Time-Series[J]. Journal of Geodesy, 2009, 83(2):175-187 |