|
- 2018
顾及背景知识的多事件序列关联规则挖掘方法
|
Abstract:
事件序列关联规则挖掘旨在发现序列中不同事件在邻近时间域内的相互依赖关系,对于理解事件间的交互作用机制具有重要意义。然而,当前事件序列关联规则挖掘方法忽略了序列中事件的分布特征,支持度与置信度阈值参数设置困难,进而造成了挖掘结果的冗余或遗漏问题。充分考虑序列中事件的固有分布特征,定义了新的规则度量指标,并给出了一种顾及背景知识的多事件序列关联规则挖掘算法。实验结果表明,与当前经典的MOWCATL算法比较,此方法挖掘结果更加准确,且规则度量指标间的一致性更好,可有效改善挖掘规则冗余或遗漏问题。应用此方法对2013年冬季北京市PM2.5浓度与气象因素的多序列进行挖掘,发现PM2.5浓度与空气相对湿度的联系最为紧密,高湿、低温和弱风环境最容易导致高浓度PM2.5的形成
[1] | Chen Jiangping, Huang Bingjian. Application and Effects of Data Spatial Autocorrelation on Association Rule Mining[J].<em>Journal of Geo-Information Science</em>, 2011,13(1):109-117(陈江平,黄炳坚. 数据空间自相关性对关联规则的挖掘与实验分析[J]. 地球信息科学学报, 2011,13(1):109-117) |
[2] | Agrawal R, Imieliński T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]. ACM SIGMOD International Conference on Management of Data, Washington D C, 1993 |
[3] | Huang X, He L, Hu M, et al. AnnualVariation of Particulate Organic Compounds in PM2.5 in the Urban Atmosphere of Beijing[J]. <em>Atmospheric Environment</em>, 2006, 40(14):2449-2458 |
[4] | Mennis J, Liu J W. Mining Association Rules in Spatio-Temporal Data:An Analysis of Urban Socioeconomic and Land Cover Change[J]. <em>Transactions in GIS</em>, 2005, 9(1):5-17 |
[5] | Sha Zongyao,Li Xiaolei. Algorithm of Mining Spatial Association Data under Spatially Heterogeneous Environment[J]. <em>Geomatics and Information Science of Wuhan University,</em> 2009, 34(12):1480-1484(沙宗尧,李晓雷. 异质环境下的空间关联规则挖掘[J]. 武汉大学学报·信息科学版, 2009,34(12):1480-1484) |
[6] | Feng L, Dillon T, Liu J. Inter-transactionalAssociation Rules for Multi-Dimensional Contexts for Prediction and Their Application to Studying Meteorological Data[J]. <em>Data and Knowledge Engineering</em>, 2001, 37(1):85-115 |
[7] | Qian F, He Q, Chiew K, et al. Spatial Co-location Pattern Discovery Without Thresholds[J]. <em>Knowledge and Information Systems</em>, 2012, 33(2):419-445 |
[8] | Yoo J S, Bow M. Mining Spatial Colocation Patterns:A Different Framework[J]. <em>Data Mining and Knowledge Discovery, </em>2012, 24(1):159-194 |
[9] | Pei J, Han J, Mortazavi-Asl B, et al. Prefixspan:Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth[C]. The 20th International Council for Open and Distance Education, Dusseldorf, Germany, 2001 |
[10] | Mannila H, Toivonen H, Verkamo A I. Discovery ofFrequent Episodes in Event Sequences[J]. <em>Data Mining and Knowledge Discovery</em>, 1997, 1(3):259-289 |
[11] | Harms S K, Deogun J, Saquer J, et al. Discovering Representative Episodal Association Rules from Event Sequences Using Frequent Closed Episode Sets and Event Constraints[C]. IEEE International Conference on Data Mining, San Jose, California, USA, 2001 |
[12] | Harms S K, Deogun J, Tadesse T. Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences[M]. New York:Springer, 2002 |
[13] | Tadesse T, Wilhite D A, Harms S K, et al. DroughtMonitoring Using Data Mining Techniques:A Case Study for Nebraska, USA[J]. <em>Natural Hazards</em>, 2004, 33(1):137-159 |
[14] | Shi Yan, Deng Min, Liu Qiliang, et al. Discovering Sequential Association Rules Between SingleOcean Climate Index and Land Abnormal Climate Events[J]. <em>Journal of Geo-Information Science, </em>2014,16(2):182-190(石岩,邓敏,刘启亮,等. 海陆气候事件关联规则挖掘方法[J]. 地球信息科学学报, 2014,16(2):182-190) |
[15] | Cai Siyue, Sui Fenzhen, Zhou Chenghu. Period Table Based Spatio-Temporal Association Rules Mining[J]. <em>Journal of Geo-Information Science</em>, 2011,13(4):455-464(柴思跃,苏奋振,周成虎. 基于周期表的时空关联规则挖掘方法与实验[J]. 地球信息科学学报, 2011,13(4):455-464) |
[16] | Agrawal R, Srikant R. MiningSequential Patterns[C]. The 6th International Conference on Data Engineering, Taipei, China, 1995 |
[17] | Srikant R, Agrawal R. MiningSequential Patterns:Generalizations and performance improvements[M]. New York:Springer, 1996 |
[18] | Zaki M J. SPADE:An Efficient Algorithm for Mining Frequent Sequences[J]. <em>Machine Learning</em>, 2001, 42(1/2):31-60 |
[19] | Zhang X W, Su F Z, Shi Y, et al. Association Rule Mining Based on Spatio-Temporal Processes of Spatial Distribution Patterns[C]. The 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, 2008 |
[20] | Whitby K T. ThePhysical Characteristics of Sulfur Aerosols[J]. <em>Atmospheric Environment </em>, 1978, 12(1-3):135-159 |
[21] | Song Y, Tang X, Xie S, et al. SourceApportionment of PM2.5 in Beijing in 2004[J]. <em>Journal of Hazardous Materials</em>, 2007, 146(1/2):124-130 |