|
- 2016
代数重构算法在GNSS水汽层析解算中的应用
|
Abstract:
全球导航卫星系统(GNSS)水汽层析反演技术是目前获取对流层水汽三维分布的重要方法。考虑到代数重构算法在迭代反演中具有节省计算机内存且计算稳定度高的优点,对代数重构算法在GNSS水汽层析中的应用进行了研究。研究结果表明,受水汽在对流层中的分布情况的影响,传统的加法代数重构算法在实际的层析解算中,会出现较大的重构误差,而乘法代数重构算法和调整了松弛参数向量的加法代数重构算法则大大提高了层析解算的精度;代数重构算法较附加约束条件的层析解算方法更易受到观测值误差的影响,但采用乘法代数重构算法可以获得优于加法代数重构算法的结果
[1] | Wang Wei, Wang Jiexian. Application of Simultaneous Iterations Reconstruction Technique for 3D Water Vapor Tomography System[J]. <em>Journal of Geodesy and Geodynamics</em>, 2011, 31(6): 100-103 (王维, 王解先. 联合迭代重构算法在对流层水汽三维重构中的应用研究[J]. 大地测量与地球动力学, 2011, 31(6):100-103) |
[2] | Baltink H K, Van der Marel H,Van der Hoeven A G A. Integrated Atmospheric Water Vapor Estimates from a Regional GPS Network[J]. <em>Journal of Geophysical Research</em>, 2002, 107(D3), doi: 10.1029/2000JD000094 |
[3] | Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. <em>Annales Geophysicae</em>, 2000, 18(2): 223-234 |
[4] | Skone S, Hoyle V. Troposphere Modeling in a Regional GPS Network[J]. <em>Journal of Global Positioning System</em>, 2005, 4(1-2): 230-239 |
[5] | Song Shuli, Zhu Wenyao, Ding Jincai, et al. 3D Water-vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field[J]. <em>Chinese Science Bulletin</em>, 2006, 50(20): 2 271-2 277 (宋淑丽, 朱文耀, 丁金才,等.上海GPS网层析水汽三维分布改善数值预报湿度场[J]. 科学通报, 2005, 50(20): 2 271-2 277) |
[6] | Xia Pengfei, Cai Changsheng, Dai Wujiao,et al. Three-dimensional Water Vapor Tomography Using Ground-based GPS and COSMIC Occultation Observation[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(8): 892-896 (夏朋飞,蔡昌盛,戴吾蛟,等. 地基GPS联合COSMIC掩星数据的水汽三维层析研究[J]. 武汉大学学报\5信息科学版,2013, 38(8): 892-896) |
[7] | Rohm W, Bosy J. The Verification of GNSS Troposphic Tomography Model in a Mountainous Area[J]. <em>Advances in Space Research</em>, 2011, 47(10): 1 721-1 730 |
[8] | Yu Shengjie, Liu Lintao, Liang Xinghui. Influence Analysis of Constraint Condition on GPS Water Vapor Tomography[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2010, 39(5): 491-496(于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报,2010, 39(5): 491-496) |
[9] | Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. <em>Journal of Geophysical Research</em>, 1992, 97(D14): 15 787-15 801 |
[10] | Bokoye A I, Royer A, O'Neill N T, et al. Multisensor Analysis of Integrated Atmospheric Water Vapor over Canada and Alaska[J]. <em>Journal of Geophysical Research</em>, 2003, 108(D15), doi:10.1029/2002JD002721 |
[11] | Chen B, Liu Z. Voxel-optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model[J]. <em>Journal of Geodesy</em>, 2014, 88(7): 691-703 |
[12] | Stolle C, Schlüter S, Heise M, et al. A GPS Based Three-dimensional Ionospheric Imaging Tool: Process and Assessment[J]. <em>Advances in Space Research</em>, 2006, 38(11): 2 313-2 317 |
[13] | Wen D B, Yuan Y B, Ou J K, et al. Three-dimensional Ionospheric Tomography by an Improved Algebraic Reconstruction Technique[J]. <em>GPS Solutions</em>, 2007, 11(4): 251-258 |
[14] | Bender M, Dick G, Ge M, et al.Development of a GNSS Water Vapour Tomography System Using Algebraic Reconstruction Techniques[J]. <em>Advances in Space Research</em>, 2011, 47(10): 1 704-1 720 |