全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一种有效的LLL规约算法
An Efficient LLL Reduction Algorithm

DOI: 10.13203/j.whugis20140484

Keywords: GNSS,整数最小二乘,格基规约,整周模糊度,LLL规约算法,部分尺度规约,贪心算法,
GNSS
,integer least-squares,integer ambiguity,lattice reduction,LLL reduction algorithm,partial size reduction,greedy algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对Lenstra-Lenstra-Lovász(LLL)规约算法在高维情况下规约耗时较大的特点,采用贪心算法和部分列向量规约,减少LLL算法规约过程中的基向量交换和尺度规约次数,以降低LLL算法的计算复杂度。通过模拟和实测的数据验证,该改进方法可以降低LLL算法的规约耗时,因而对高维模糊度的快速解算具有一定的参考应用价值

References

[1]  Liu L T, Hsu H T, Zhu Y Z, et al. A New Approach to GPS Ambiguity Decorrelation[J]. <em>Journal of Geodesy</em>,1999,73: 478-490
[2]  Xu P L. Random Simulation and GPS Decorrelation[J]. <em>Journal of Geodesy</em>,2001,75:408-423
[3]  Xu P L. Parallel Cholesky-based Reduction for the Weighted Integer Least Squares Problem[J]. <em>Journal of Geodesy</em>,2012,86:35-52
[4]  Xie X, Chang X W, Borno M A. Partial LLL reduction[C]. Proceeding of IEEE GLOBECOM 2011, Houston, USA, 2011
[5]  Wubben D, Bohnke R, Rinas J, et al. Efficient Algorithm for Decoding Layered SpacetimeCodes[J]. <em>Electronics Letters</em>, 2001,37(22):1 348-1 350
[6]  Chang X, Yang X, Zhou T. MLAMBDA: A Modified LAMBDA Method for Integer Least-squares Estimation[J]. <em>Journal of Geodesy</em>, 2005, 79(9): 552-565
[7]  Lenstra A K, Lenstra H W, Lovasz L. Factoring Polynomials with Rational Coefficients [J]. <em>Mathematische Annalen</em>, 1982,261(4):515-534
[8]  Yang Ronghua, Hua Xianghong, Li Zhao, et al. An Improved LLL Algorithm for GPS Ambiguity Solution[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2010, 35(1):21-24 (杨荣华,花向红,李昭,等. GPS模糊度降相关LLL算法的一种改进[J]. 武汉大学学报\5信息科学版,2010,35(1):21-24)
[9]  Jazaer I S, Amiri-simkooei A R,Sharifi M A. Fast Integer Least-squares Estimation for GNSS High-dimensional Ambiguity Resolution Using the Lattice Theory[J]. <em>Journal of Geodesy</em>, 2012,86:123-136
[10]  Chen Zhiping, Xu Zongben. Computer Math Computer Complexity Theory and NPC,NP Hard Problem [M]. 1st Edition. Beiing:Science Press,2001(陈志平, 徐宗本. 计算机数学:计算复杂性理论与NPC、NP难问题的求解[M].1版. 北京:科学出版社, 2001)
[11]  Teunissen P J G, Jonge P J, Tiberius C C J M. The Least-squares Ambiguity Decorrelati on Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. <em>Journal of Geodesy</em>, 1995,70(1): 65-82
[12]  Hassibi A, Boyd S. Integer Parameter Estimation in Linear Models with Applications to GPS[J]. <em>IEEE Transactions on Signal Processing</em>,1998,46(11):2 938-2 952
[13]  Lou Lizhi. One Modified LLL Algorithm in GPS Decorrelation[J]. <em>Journal of Tongji University</em>,2004,32(2):237-242(楼立志.对GPS模糊度解相关方法的一种改进[J].同济大学学报, 2004, 32(2):237-242)
[14]  Liu Zhiping, He Xiufeng. An Improved LLL Algorithm for GPS Ambiguity Solution[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2007, 36(3):286-289 (刘志平,何秀凤. 改进的GPS模糊度降相关LLL算法[J].测绘学报, 2007, 36(3):286-289)
[15]  Liu Jingnan, Yu Xingwang, Zhang Xiaohong.GNSS Ambiguity Resolution Using Lattice Theory[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2012, 41(5):636-645 (刘经南,于兴旺,张小红.基于格论的GNSS模糊度解算[J].测绘学报,2012,41(5):636-645)
[16]  Cong L,Howgrave-graham N. Effective LLL Reduction for Lattice Decoding[C]. IEEE International Symposium on Information Theory,Nice,France, 2007
[17]  Zhou Y M. A New Practical Approach to GNSS High-dimensional Ambiguity Decorrelation[J]. <em>GPS Solutions</em>,2011, 15:325-331

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133